Section 6.1: Area between Curves

Consider the continuous functions $f(x)$ and $g(x)$ with the property on the interval $[a, b]$ that both are above the x-axis and $f(x) \geq g(x)$. Write down the computation that will give the area bounded between these functions on this interval.

$$
\text { heiglt }=f(x)-g(x)
$$

$$
\int_{a}^{b} f(x)-g(x) d x
$$

For the next graphs, set-up the integrals) that will give the area that is bounded between $f(x)$ and $g(x)$ on the interval $[a, b]$.

$$
\text { Arch }=\int_{a}^{b} f(x)-g(x) d x
$$

Example: Find the area that is bounded by these curves.

$$
\begin{aligned}
& \begin{array}{l}
\begin{array}{l}
y=x+3 \\
x^{2}-9 \\
x^{2}-9 \\
(x-4)(x+3=0
\end{array} \\
x=4 x=-3
\end{array} \\
&=\int_{-3}^{4} x+3-x^{2}+9 d x=\int_{-3}^{4} x+3-\left(x^{2}-9\right) d x \\
&=\left.\left(\frac{x^{2}}{2}-\frac{x^{3}}{3}+12 x\right)\right|_{-3} ^{4}=\frac{16}{2}-\frac{64}{3}+48-\left(\frac{9}{2}+\frac{27}{3}-36\right) \\
&=12 d x
\end{aligned}
$$

\square

$$
\begin{aligned}
& \text { Example: Find the area that is bounded by these curyt: } \\
& \begin{array}{l}
y_{1}^{2}=y^{2} \\
y^{2}=2 y^{2}-4
\end{array} \\
& y=2 y^{2}-4 \\
& y= \pm 2 \\
& \text { Aten }=\int_{-2}^{2} y^{2}-\left(2 y^{2}-4\right) d y=\int_{-2}^{2} 4-y^{2} d y \\
& =2
\end{aligned}
$$

Example: Find the area that is bounded(enclosed) by these curves from $x=-2$ to $x=1$.

$$
\begin{aligned}
& y=e^{-3 x} \\
& y=e^{x}
\end{aligned}
$$

$$
\text { Area }=\int_{-2}^{0} e^{-3 x}-e^{x} d x+\int_{0}^{1} e^{x}-e^{-3 x} d x=\ldots=134.6798
$$

\square
Example: Set up the integrals), with respect to the variable y, that gives the area that is bounded(enclosed) by these curves.

$$
\begin{array}{ll}
\begin{array}{ll}
3 x+2 \sqrt{x}=16 & \\
2 \sqrt{x}=16-3 x & \frac{y^{2}}{4}+y=16 \\
4 x=256-2(48) x+9 x^{2} & 3 y^{2}+4 y=64 \\
& 3 y^{2}+4 y-64=0 \\
& (3 y+16)(y-4) \\
y=-\frac{16}{3} y=4
\end{array} \\
\text { Aten }=\int_{0}^{1} 5 y-\frac{y^{2}}{4} \quad d y+\int_{1}^{4} \frac{16-y}{3}-\frac{y^{2}}{4} d y \\
& =\cdots=\frac{32}{3}
\end{array}
$$

Example: Set up the integral(s) that will give area that is bounded by these curves on the interval $-2 \leq y \leq 3$.

$$
\begin{aligned}
& \underbrace{\substack{x=y^{2}-4 y \\
y=0.5 x}}=y(y-4) \\
& y=\frac{1}{2} x
\end{aligned} x=2 y .
$$

$$
\begin{aligned}
\text { Area } & =\int_{-2}^{0} y^{2}-4 y-2 y d y+\int_{0}^{3} 2 y-\left(y^{2}-4 y\right) d y \\
& =\cdots=\frac{98}{3}
\end{aligned}
$$

Example: Set up the integrals) that will give area that is bounded by these curves from $x=0$ to $x=2 \pi$. $[0,2 \pi]$

$$
\begin{aligned}
& \sin (x)=2-3 \sin (x) \\
& 4 \sin (x)=2 \\
& \sin (x)=\frac{2}{4}=\frac{1}{2}
\end{aligned}
$$

$$
\pi=\pi / 6 \quad x=5 \pi / 6
$$

$$
\begin{aligned}
\text { Arch }=\int_{0}^{\pi / 6} 2-3 \sin (x)-\sin (x) d x+ & \int_{\pi / 6}^{5 \pi / 6} \sin (x)-[2-3 \sin (x)] d x \\
& +\int_{5 \pi / 6}^{2 \pi} 2-3 \sin (x)-\sin (x) d x
\end{aligned}
$$

Example: Set up the integrals) that will give area that is bounded by these curves $x=|y-1|$ and $x=y^{2}-3$ with the condition that $y \geq 0$

$$
\begin{aligned}
& x=y^{2}=3 \\
& x=|y-1| \\
& x=\left\{\begin{array}{l}
y-1, y \geqslant 1 \\
-(y-1), y<1
\end{array}\right. \\
& y-1=y^{2}-3 \\
& 0=y^{2}-y-2 \\
& 0=(y-2)(y+1) \\
& y=2 \quad y=-1
\end{aligned}
$$

$$
\int_{0}^{1}-(y-1)-\left(y^{2}-3\right) d y
$$

$$
+\int_{1}^{2} y-1-\left(y^{2}-3\right) d y
$$

$$
=\ldots=13 / 3
$$

