Math 152 Exam 3 Review

Solutions and questions can be found at the link:
https://www.math.tamu.edu/~kahlig/152WIR.html

The following is a collection of questions to review the topics for the second exam. This is not intended to represent an actual exam nor does it have every type of problem seen int he homework.
These questions cover sections $11.4,11.5,11.6,11.8,11.9,11.10,11.11$

$\underline{\text { Important Maclaurin series }}$

$$
\begin{aligned}
& \frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\ldots \quad|x|<1 \\
& e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\ldots \quad R=\infty
\end{aligned}
$$

$$
\sin (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots \quad R=\infty
$$

$$
\begin{aligned}
& \cos (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\ldots \quad R=\infty \\
& \tan ^{-1}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\ldots \quad R=1 \\
& \ln (1+x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n+1}}{n+1}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\ldots \quad-1<x \leq 1
\end{aligned}
$$

1. Determine if the series converges.
(a) $\sum_{n=1}^{\infty} \frac{(-5)^{n+1} n^{4}}{9^{n+3}}$

$$
a_{n}=\frac{(-1)^{n+1} 5^{n+1} n^{n}}{a^{n+3}}
$$

$$
\begin{aligned}
& a_{n n}=\frac{(-1)^{n+2} 5^{n+2}(n+2)^{1 /}}{9^{n+4}} \\
& \lim _{n \rightarrow d}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow d}\left|\frac{(-1)^{n+2} s^{n+2}(n+1)^{4}}{s^{n+4}} \cdot \frac{9^{n+3}}{(-1)^{n+1} s^{n+1} n^{n}}\right| \\
& \lim _{n \rightarrow \infty} \frac{5(n+1)^{4}}{9 n^{4}}=\lim _{n \rightarrow \infty} \frac{5}{9}\left(\frac{n+1}{n}\right)^{4}=\frac{5}{9} \\
& \text { The series is Albs. cons. (ie convergent.) }
\end{aligned}
$$

Page 3
(b) $\sum_{n=1}^{\infty} \frac{7 n^{3}+\cos (2 n)}{n^{4}+1}$

$$
\begin{aligned}
& -1 \leq \cos (2 n) \leq 1 \\
& 0<7 n^{3}-1 \leq 7 n^{3}+\cos (2 n) \leq 7 n^{3}+1 \\
& \frac{7 n^{3}-1}{n^{4}+1} \leq \frac{7 n^{3}+\cos (2 n)}{n^{4}+1} \leq \frac{7 n^{3}+1}{n^{4}+1}
\end{aligned}
$$

$$
\sum \frac{7 n^{3}-1}{n^{4}+1}
$$

$$
\sum \frac{7 n^{3}+1}{n^{4}+1}
$$

Look like $\sum \frac{7 n^{3}}{n^{4}}= \begin{cases}\frac{7}{n} & \begin{array}{l}p \text {-series } \\ p-1 \\ \text { div. }\end{array}\end{cases}$
use LCT L. Th $\sum \frac{7}{n}$

$$
\lim _{n \rightarrow \infty} \frac{\frac{7 n^{3}-1}{n^{4}+1}}{\frac{7}{n}}=\lim _{n \rightarrow \infty} \frac{7 n^{4}-n}{7 n^{4}+7}=1 \quad \begin{aligned}
& \sum_{\text {LL J }} \frac{7 n^{3}-1}{n^{4}+1} \\
& \text { duN }
\end{aligned}
$$

by the comprise test we get

$$
\sum_{n=1} \frac{7 n^{3}+\cos (2 n)}{n^{4}+1} \quad \text { viilldw. }
$$

test for div.

$$
\lim _{n \rightarrow \infty} \frac{7 n^{3}+\cos (2 n)}{n^{4}+1}=\lim _{n \rightarrow \infty} \frac{7 n^{3}}{n^{1+1}}+\frac{\cos (2 n)}{n^{4}+1}=0
$$

Test for div does not help.

Page 4
(c) $\sum_{n=1}^{\infty} \frac{4^{n}}{3^{2 n}-7}=\sum \frac{4^{n}}{9^{n}-1}$

Luse LCt $\sum\left(\frac{4}{9}\right)^{n}$ seorectric

$$
\begin{array}{ll}
<\left(\frac{4}{9}\right) & r=\frac{4}{4} \\
= & \frac{4^{n}}{9^{n}} \\
\operatorname{con} v .
\end{array} \quad \frac{4}{9^{n}}<\frac{4}{9^{n}-7}
$$

$$
\lim _{n \rightarrow \infty} \frac{\frac{4^{n}}{9^{n}-7}}{\frac{4^{n}}{5^{n}}}=\lim _{n \rightarrow \infty} \frac{4^{n}}{9^{n}-1} \cdot \frac{9^{n}}{4^{n}}=\lim _{n \rightarrow \infty} \frac{9^{n}}{9^{n}-7}
$$

$$
\frac{l^{\prime H}}{=} \lim _{n \rightarrow \infty} \frac{q^{n} \ln (9)}{q^{n} \ln (9)}=1
$$

by lCT $\sum \frac{4^{n}}{9^{n}-7}$ converges.

Page 5
2. Suppose that the power series $\sum_{n=0}^{\infty} c_{n}(x-2)^{n}$ has a radius of convergence of 7 . What can be concluded about the convergence/divergence of the following pair of series?

3. Consider the Fth partial sum of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n 7^{n}}$ as an approximation. Use the alternating series rule to obtain an upper bound on the absolute value of the error.

$$
\text { error is } R_{5}
$$

Page 7

4. Assume that the series $\sum_{n=1}^{\infty}(-1)^{n+1} b_{n}$ will converge by the alternating series test.

Which of these is an approximation to the sum of the series so that the maximum error will be less than 0.001 and contains the fewest number of terms?

$$
\left|h_{n}\right| \leq b_{n+1}<.001
$$

(a) $b_{1}+b_{2}+b_{3}+b_{4}+b_{5}$

Is the approximation more or less than the actual sum?

$n+1=6$

(a) more (b) less

5. Determine if the series is absolutely convergent, conditionally convergent, or diver-

$$
\text { (a) } \sum_{n=1}^{\infty} \frac{(-1)^{n} e^{1 / n}}{n^{2}}=A
$$

by the definition
of Abs. corr.
The series A
is Absolutely
Cosurijent
$\prod^{n \rightarrow \infty}$
b_{n} the definition
nerserios

$$
\sum_{n=1}^{\infty}\left|\frac{(-1)^{n} e^{1 / n}}{n^{2}}\right|=\sum_{n=1}^{\infty} \frac{e^{\frac{1}{n}}}{n^{2}}
$$

Try LCT with $\sum \frac{1}{n^{2}} \quad \begin{aligned} & \text { conv. } \\ & p \text {-series } ~\end{aligned}=2$
$\lim _{n \rightarrow \infty} \frac{\frac{e^{1 / n}}{n^{2}}}{\frac{1}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{e^{1 / n}}{n^{2}} \cdot \frac{n^{2}}{1}=\lim _{n \rightarrow \infty} e^{\frac{1}{n}}=e^{0}=1$
by LCT $\sum \frac{e^{1 / n}}{n^{2}}$ will converge.

Page 9

The series is conditionally convergent

new series

$$
\sum_{n=2}\left|\frac{7 \sin \left(n^{2}+1\right)}{n^{4}-2 n+5}\right|=\sum_{n=2} \frac{\left|7 \sin \left(n^{2}+1\right)\right|}{n^{4}-2 n+5}=J
$$

$$
\begin{aligned}
& 0 \leq\left|7 \sin \left(n^{2}+1\right)\right| \leq 7 \\
& 0 \leq \frac{\left|7 \sin \left(n^{2}+1\right)\right|}{n^{4}-2 n+5} \leq \frac{7}{n^{4}-2 n+5}
\end{aligned}
$$

now boll at $\sum \frac{7}{n^{4}-2 n+5} \quad$ looks like $\left\{\begin{array}{l}\frac{7}{} \begin{array}{l}p-\text { series } \\ n \\ n=4 \\ \text { com. }\end{array} .\end{array}\right.$
use let to show will conn.

$$
\lim _{n \rightarrow \infty} \frac{\frac{7}{n^{4}-2 n+5}}{\frac{7}{n^{4}}}=\lim _{n \rightarrow \infty} \frac{7}{n^{4}-2 n+5} \cdot \frac{n^{4}}{7}=\lim _{n \rightarrow \infty} \frac{n^{4}}{n^{4}-2 n+5}=1
$$

bo LLT $\left\{\frac{7}{n^{4}-2 n+5}\right.$ cone.
by comparison the series J will conc.

Thus the origind series is Abs, comr.

$$
(x-a)^{n} \vec{e}^{\text {center }}
$$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|\frac{x^{2(n+1)}}{(n+1)^{2} 25^{n+1}} \cdot \frac{n^{2} 25^{n}}{x^{2 n}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{x^{2 n+2}}{(n+1)^{2} 25^{n+1}} \cdot \frac{n^{2} 25^{n}}{x^{2 n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x^{2} n^{2}}{(n+1)^{2} 25}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{x^{2}}{25} \cdot\left(\frac{n}{n+1}\right)^{2}\right|=\left|\frac{x^{2}}{25}\right|<1 \\
& \quad\left|\frac{x^{2}}{25}\right|<1 \\
& x^{2}=\left|x^{2}\right|<25 \\
& \quad|x|<5 \\
& \\
& \quad-5<x|x| \\
& \quad R=5
\end{aligned}
$$

now Test the endpoints for Interval ot conk.

$$
x=5 \left\lvert\, \quad S \quad 5^{2 n}=S \frac{25^{n}}{\sum_{n=1}^{n}} \frac{x^{2 n}}{n^{2} 25^{n}}\right.
$$

$$
\begin{aligned}
& x=5 \int \sum_{n=1} \frac{5^{2 n}}{n^{2} 25^{n}}=\sum_{n=1}^{n=1} \frac{25^{n}}{n^{2} 25^{n}} \quad L \begin{array}{l}
n=1 \\
\\
\end{array}=\sum_{n=1} \frac{1}{n^{2}} \quad \rho \text {-serits } p=2 \text { conv. } \\
& x=-5 \int \frac{(-5)^{2 n}}{n^{2} 25^{n}}=\sum \frac{25^{n}}{n^{2} 25^{n}}=\sum \frac{1}{n^{2}} \begin{array}{l}
\text { p-serics } \\
p=2 \\
\text { conv }
\end{array}
\end{aligned}
$$

Answer $R=5 \quad[-5,5]$
7. Find the radius of convergence and the interval of convergence of the power series.
$\sum_{n=1}^{\infty} \frac{(-1)^{n}(x+4)^{n}}{n \pi^{n}}$ centered at $x=-4 \quad(a=-4)$

$$
\begin{gathered}
\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n n}(x+4)^{n+1}}{(n+1) 7^{n+1}} \cdot \frac{n 7^{n}}{(-1)^{n}(x+4)^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(x+4)}{7} \frac{n}{n+1}\right| \\
=\left|\frac{x+4}{7}\right|<1
\end{gathered}
$$

$$
\begin{array}{ll}
\left|\frac{x+4}{7}\right|<1 & |x-a|<\underline{R} \\
|x+4|<7 & |x--4|=|x+4| \leq R
\end{array} \quad R=7 .
$$

Test and points

$$
x=3 \sum_{n=1} \frac{(-1)^{n}(3+4)^{n}}{n 7^{n}}=\sum_{n=1} \frac{(-1)^{n} 7^{n}}{n 7^{n}}=\sum_{n=1} \frac{(-1)^{n}}{n}
$$

cone by AST $b_{n}=\frac{1}{n}$

$$
\begin{aligned}
X=-11 & \sum_{n=1} \frac{(-1)^{n}(-11+4)^{n}}{n 7^{n}}=\sum_{n=1} \frac{(-1)^{n}(-7)^{n}}{n 7^{n}} \\
& =\sum_{n=1} \frac{(-1)^{n}(-1)^{n} 7^{n}}{n 7^{n}}=\sum_{n=1} \begin{array}{ll}
1 & \text { dive } \\
\text { by } & \begin{array}{l}
\text { b-secies } \\
\rho=1
\end{array}
\end{array}
\end{aligned}
$$

$$
R=7 \quad[:(-11,3]
$$

Page 13
8. Find the interval and radius of convergence of the series $\sum_{n=1}^{\infty} \frac{n!(2 x-3)^{n}}{5^{n}}$.

$$
R=0 \quad I=\left\{\frac{3}{2}\right\}
$$

9. Find the sum of these series
(a) $\sum_{n=0}^{\infty} \frac{(-1)^{n}(5)^{2 n+1}}{(2 n+1)!}=\sin (5)$

$$
\begin{aligned}
& \sin (x)=\sum_{n=0} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!} \\
& \cos (x)=\sum_{n=0} \frac{(-1)^{n} x^{2 n}}{(2 n)!}
\end{aligned}
$$

(b) $\begin{aligned} \sum_{i=0}^{\infty}=\frac{(-1)^{n+5 n+1}}{3^{2 n}(2 n)!}=\sum_{n=0} \frac{(-1)^{n} 5^{2 n} \cdot 5^{1}}{3^{2 n}(2 n)!} & =5 \sum_{n=0} \frac{(-1)^{n}\left(\frac{5}{3}\right)^{2 n}}{(2 n)!} \\ & =5 \cos \left(\frac{5}{3}\right)\end{aligned}$
$\quad e^{x}=\sum_{n=0} \frac{x^{n}}{n!}$
$\begin{aligned} & \text { (c) } \sum_{n=0}^{\infty}=\frac{(-2)^{n}}{n!}=e^{-2}-\frac{(-2)^{0}}{0!}-\frac{(-2)^{1}}{1!}=e^{-2}-1--2 \\ & n=0 \\ & \text { missing form } \\ & n=0 \text { term } \\ & n=1 \text { term }\end{aligned} \quad \begin{aligned} & e^{-2}-1+2\end{aligned} \quad=e^{-2}+1$

Page 15
10. Find the Maclaurin series for the function $f(x)=\frac{x^{2}}{(1-3 x)^{2}}=\frac{1}{3} \cdot x^{2} \cdot 5^{1}$

$$
\begin{gathered}
\text { Let } y=\frac{1}{1-3 x}=(1-3 x)^{-1}=\sum_{n=0}(3 x)^{n}=\sum_{n=0} 3^{n} x^{n} \\
\qquad \begin{array}{l}
|3 x|<\mid \\
|x|<\frac{1}{3}=R
\end{array}
\end{gathered}
$$

$$
\begin{aligned}
y^{\prime} & =-(1-3 x)^{-2} \cdot(-3) \\
& =\frac{3}{(1-3 x)^{2}}=\sum_{n=1} 3^{n} n x^{n-1}
\end{aligned}
$$

11. Use a MacLaurin series for $f(x)=x^{3} \arctan \left(5 x^{2}\right)$ to answer the following.

$$
=\sum_{n=0}^{\left(\text {a) } f^{\prime}(x)=\right.} \frac{(-1)^{n} 5^{2 n+1}(4 / n+5) x^{4 n+4}}{2 n+1}
$$

$$
\arctan \left(5 x^{2}\right)
$$

(b) $f_{f(x) d x}=C+\sum_{n=0} \frac{(-1)^{n} 5^{2 n+1} x}{(2 n+1)(4 n+6)}$

$$
\sum \ln (x-a)^{n}
$$

12. Find the 23th derivative of $f(x)$ at $x=5$, i.e. $f^{(23)}(5)$, for $f(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{3^{n}(n+2)}(x-5)^{n}$

$$
\frac{f^{(n)}(s)}{n!}
$$

$$
=
$$

$$
\left.f^{(n)} / 5\right)=\frac{(-1)^{n} n!}{3^{n}(n+2)}
$$

$$
f^{(23)}(5)=\frac{-(23)!}{3^{23}(25)}
$$

13. Find the Taylor series for $f(x)=\frac{1}{x^{2}}$ about $a=5$. Express your answer in summation

$$
\begin{aligned}
& \xrightarrow{n=0} f(x)=x^{-2}=\frac{1}{x^{2}} \\
& f^{\prime}(x)=-2 x^{-3}=\frac{-2}{x^{3}} \\
& f^{\prime \prime}(x)=2.3 x^{-4}=\frac{2.3}{x^{4}} \\
& f^{(n)}(x)=\frac{(-1)^{n}(n+1)!}{x^{n+2}} \\
& \text { works for } n \geqslant 0 \\
& \text { find } \mathrm{Cn} \\
& f^{\prime \prime \prime}(x)=-2.3 .4 x^{-5}=\frac{-2 \cdot 3.4}{x^{5}} \\
& f^{(4)}(x)=2 \cdot 3 \cdot 4 \cdot 5 x^{-6}=\frac{2 \cdot 3 \cdot 4 \cdot 5}{x^{6}} \\
& C_{n}=\frac{1}{n!} f^{(r)}(5) \\
& C_{n}=\frac{1}{n!} \cdot \frac{(-1)^{n}(n+1)!}{5^{n+2}} \\
& C_{n}=\frac{(-1)^{n}(n+1)}{5^{n+2}} \\
& f(x)=\sum_{n=0} \frac{(-1)^{n}(n+1)}{5^{n+2}}(x-5)^{n}
\end{aligned}
$$

14. Find the Taylor series for $f(x)=(x+1) e^{x}$ about $a=2$. Express your answer in summation notation.

$$
\begin{aligned}
f(x) & =(x+1) e^{x} \\
f^{\prime}(x) & =1 e^{x}+(x+1) e^{x}=[1+(x+1)] e^{x} \\
& =(x+2) e^{x} \\
f^{\prime \prime}(x) & \left.=1 e^{x}+(x+2) \cdot e^{x}=[1+(x+2)] e^{x} \quad \begin{array}{l}
f^{x}(x)=(x+n+1) e^{x} \\
\\
\\
=(x+3) e^{x} \\
f^{\prime \prime \prime}(x)
\end{array}\right) \quad \begin{array}{l}
\text { works for } n \geqslant 0 \\
C_{n}=\frac{f^{(n)}(2)}{n!} \\
C_{n}=\frac{(2+n+1) e^{2}}{n!} \\
C_{n}=\frac{(3+n)}{n!} e^{2} \\
f(x)
\end{array}=\sum_{n=0}^{n} \frac{(3+n) e^{2}}{n!}(x-2)^{n}
\end{aligned}
$$

$$
\begin{aligned}
& T_{4}(x)=f(6)+\frac{f^{\prime}(6)}{1!}(x-6)+\frac{f^{\prime \prime}(6)}{2!}(x-6)^{2}+\frac{f^{\prime \prime \prime}(6)}{3!}(x-6)^{3}+\frac{\left.f^{(v)} / 6\right)}{4!}(x-6)^{4} \\
& f(x)=x \ln (x) \\
& f(6)=6 \ln (6) \\
& f^{\prime}(x)=1 l_{2}(x)+x \cdot \frac{1}{x} \\
& f^{\prime}(6)=\ln (6)+1 \\
& =\ln (x)+1 \\
& f^{\prime \prime}(6)=\frac{1}{6} \\
& f^{\prime \prime}(x)=\frac{1}{x}=x^{-1} \\
& f^{\prime \prime \prime}(6)=\frac{-1}{36} \\
& f^{\prime \prime \prime}(x)=-x^{-2}=\frac{-1}{x^{2}} \\
& f^{(4)}(6)=\frac{2}{6^{3}} \\
& T_{4}(x)=f(6)+\frac{f^{\prime}(6)}{1!}(x-6)+\frac{f^{\prime \prime}(6)}{2!}(x-6)^{2}+\frac{f^{\prime \prime \prime}(6)}{3!}(x-6)^{3}+\frac{f^{(6)}(6)}{4!}(x-6)^{4} \\
& =6 \ln (6)+[\ln (6)+1](x-6)+\frac{1}{2!} \cdot \frac{1}{6}(x-6)^{2}+\frac{1}{3!} \cdot\left(\frac{-1}{36}\right)(x-6)^{3}+\frac{1}{4!} \cdot \frac{2}{6^{3}}(x-6)^{4}
\end{aligned}
$$

