Section 2.4: Exponential Functions

Basic forms: Form 1: $y=b^{x}$ where $b>0$ and $b \neq 1 \quad$ Form 2: $y=e^{k x}$

Exponential Rules: $\quad a^{x} a^{y}=a^{x+y} \quad\left(a^{x}\right)^{y}=a^{x y} \quad \frac{a^{x}}{a^{y}}=a^{x-y} \quad(a b)^{x}=a^{x} b^{x}$
Example: Solve for x. Give exact answers.
A) $10^{2+3 x}=100^{5 x+6}$
B) $\frac{9^{x}}{3^{x+1}}=27$
C) $x^{2} 6^{3 x}=6^{3 x}$

Compound interest: $\quad A=P\left(1+\frac{r}{m}\right)^{m t}$

$$
\begin{array}{lll}
\mathrm{r}=\text { interest rate } & \mathrm{m}=\text { compounding style } & \mathrm{t}=\text { time in years } \\
\mathrm{A}=\text { future value } & \mathrm{P}=\text { amount invested(present value) } &
\end{array}
$$

Example: How much would you have in the bank after 2 years if you invest $\$ 3000$ at 5.25% compounded quarterly?

Example: What do you invest now to have $\$ 7000$ in 4 years if the account earns 6.5% compounded monthly?

Growth/Decay applications: $y=c * e^{k x} \quad$ growth when $k>0$, decay when $k<0$
Example: The population of a town grows continuously at a growth rate of 7.2%. If the town has a current population of 50 thousand people, what will be the population in 3 years?

Example: How long will it take the population of the town to double?

