Section 2.4: Exponential Functions

<u>Basic forms:</u> Form 1: $y = b^x$ where b > 0 and $b \neq 1$ Form 2: $y = e^{kx}$

Exponential Rules: $a^x a^y = a^{x+y}$ $(a^x)^y = a^{xy}$ $\frac{a^x}{a^y} = a^{x-y}$ $(ab)^x = a^x b^x$

Example: Solve for x. Give exact answers.

A) $10^{2+3x} = 100^{5x+6}$

B)
$$\frac{9^x}{3^{x+1}} = 27$$

C) $x^2 6^{3x} = 6^{3x}$

Compound interest:	$A = P\left(1 + \frac{r}{m}\right)^{mt}$	
r = interest rate A = future value	m = compounding style P = amount invested(present value)	t = time in years

Example: How much would you have in the bank after 2 years if you invest \$3000 at 5.25% compounded quarterly?

Example: What do you invest now to have \$7000 in 4 years if the account earns 6.5% compounded monthly?

Growth/Decay applications: $y = c * e^{kx}$ growth when k > 0, decay when k < 0

Example: The population of a town grows continuously at a growth rate of 7.2%. If the town has a current population of 50 thousand people, what will be the population in 3 years?

Example: How long will it take the population of the town to double?