Section 3.5: Basic Differentiation Properties

Definition: The derivative is a function that will give the instantaneous rate of change for any value of a in the domain of $f(x)$ where $f(x)$ is differentiable at $x=a$.
The common ways of denoting the derivative is $f^{\prime}(x), y^{\prime}$, or $\frac{d y}{d x}$

Derivatives of constants

Basic Power Rule
$y=x^{n}$

Procedural Rules

$y=c f(x)$, where c is a constant.
$y=f(x) \pm g(x)$

Example: Find the derivatives of these functions.
A) $y=3 x^{5}$
B) $B(x)=3+x^{5}$
C) $C(x)=x^{7}+3 x^{2}-6 x+8$
D) $K(x)=3 x^{1.4}+7 x^{-3}+5^{6}$
E) $J(x)=\sqrt{x}+\sqrt[3]{x^{4}}+\frac{1}{x^{5}}$
F) $F(x)=\frac{1}{x}+\frac{3}{4 x^{3}}+7 x+\pi^{2}$
G) $G(x)=\left(x^{2}+4\right)(x-6)$
H) $H(x)=\left(x^{4}+6\right) \sqrt{x}$
I) $y=\frac{5 x^{2}+3 x+7}{x^{2}}$
J) $y=\frac{7 x^{3}+16}{\sqrt{x^{3}}}$

Example: Find the equation of the tangent line at $x=3$ for $y=5 x^{4}+2 x^{2}+7$

Example: Find the values of x where the tangent line is horizontal for $y=1.5 x^{4}+3 x^{3}-30 x^{2}+e^{5}$

Example: Find the values of x where the tangent lines to $f(x)$ are parallel to $y=5 x+7$
$f(x)=x^{3}-7 x^{2}+30$

Example: Find the values of x where this function has rate of change of 0 .
$y=a x^{2}+b x+c$

Example: The total sales of a company (in millions of dollars) x months from now are given by $S(x)=0.015 x^{4}+0.4 x^{3}+3.4 x^{2}+10 x-3$

Find $S(3)$ and $S^{\prime}(3)$. Explain what these computations mean in context of the problem.

