Section 5.1: First Derivatives and Graphs

Definition: A function is said to be increasing on an interval if the y -values get larger as the x -values increase. A function is said to be decreasing on an interval if the y-values get smaller as the x-values increase.

Definition: $x=a$ is called a critical value of $f(x)$ provided that
1)
2)

The critical values can be divided into three categories: local (relative) minimum, local (relative) maximum, or neither. The local minimums and local maximums are sometimes grouped together and call local extrema.

Example: Find the intervals where the function is increasing and where it is decreasing. Also classify all critical values.
A) $y=x^{3}+2 x^{2}-9 x+8$
B) $y=3 x^{5}-20 x^{3}+20$
C) $y=\frac{x^{2}+1}{x}$
D) $y=e^{x^{2}-4 x}$
E) $y^{\prime}=(x-4)^{3}(x+5)^{2}$, Note: domain of y is all real numbers.
F) $y=x \ln (x)+1$
G) $y=\frac{x}{(x-3)^{2}}$ also $y^{\prime}=\frac{-x-3}{(x-3)^{3}}$
H) $y=\left(x^{2}-4 x\right)^{2 / 3}$

Example: Here is the graph of $f^{\prime}(x)$.

Where is $f(x)$ increasing?
Where is $f(x)$ decreasing?

