Section 5.5: Absolute Maxima and Minima

Example: For the function $f(x)=x^{2}-2 x-3$, find and classify the critical values.

Definition: If $f(c) \geq f(x)$ for x is the domain of f, then $f(c)$ is called the absolute maximum value(absolute max) of $f(x)$.
If $f(c) \leq f(x)$ for x is the domain of f, then $f(c)$ is called the absolute minimum value(absolute \min) of $f(x)$.

Example: For these functions, find the absolute max and the absolute min.
A) $y=3 x^{2}-x^{3}+1$
B) $y=x^{4}-4 x^{3}$

Restricted Domains:

Definition: If $f(x)$ is a continuous function on a closed interval, $[a, b]$, then $f(x)$ will have both an absolute max and an absolute min. They will happen at either critical values in the interval or at the ends of the interval, $x=a$ or $x=b$.

Example: For the function, find the absolute max and the absolute min on the indicated interval. $f(x)=12 x^{2}-3 x^{3}+1$
A) $[2,5]$
B) $[-3,5]$
C) $(-3,5)$

Example: For the function, find the absolute max and the absolute min on the indicated interval. $f(x)=\frac{3}{x^{2}-1}$
A) $[2,5]$
B) $[0,5]$

Example: For the function, find the absolute max and the absolute min on the indicated interval.
$f(x)=x+\frac{16}{x},(0, \infty)$

Example: If $f^{\prime}(x)=6 x-12$, and the function $f(x)$ has critical values of $x=1$, and $x=3$. What can be said about the critical values.

Second Derivative Test Suppose that $x=c$ is a critical values for $f(x)$.

Example: If $g^{\prime \prime}(7)=8$, what conclusion can be made for $g(x)$ at $x=7$?

