Section 6.4: Definite Integral

Example: The following data gives the speed of a car x seconds after the car starts to stop. Estimate the distance the car travels during this time period.

x(seconds)	0	2	4	6	8
$\operatorname{speed}(\operatorname{ft/sec})$	50	40	25	10	0

The marginal revenue, in millions of dollars per year, for a product is given in the table.

year	1990	1991	1992	1993	1994
rate	3.3	2.2	2.8	2.9	2.4

Approximate the revenue for this product from 1990-1993.

Riemann Sums

Terminology: n = the number of rectangles base of each rectangle $= \frac{b-a}{n}$ L_n is a left sum with n rectangles R_n is a right sum with n rectangles M_n is a midpoint sum with n rectangles

Example: Use the function $f(x) = x^2 + 1$ on the interval [0, 2] to answer the following.

Definition: Let f(x) be a continuous function on [a, b]. The **definite integral** of f from a to b is defined and denoted in the following manner.

The integrand is f(x), the lower limit of the integral is a, and the upper limit of the integral is b.

Example: Estimate
$$\int_{1}^{5} \ln(1+x^2) dx$$
 using 4 rectangles.

Properties of the definite integral

$$\int_{a}^{a} f(x) dx = 0 \qquad \qquad \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx = \int_{a}^{c} f(x) dx$$
$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx \qquad \qquad \int_{a}^{b} f(x) + g(x) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$
$$\int_{a}^{b} k * f(x) dx = k \int_{a}^{b} f(x) dx$$

Example: Use the fact that
$$\int_{a}^{b} g(x) dx = 7$$
 and $\int_{a}^{b} f(x) dx = 4$ to compute $\int_{a}^{b} 5f(x) - 2g(x) dx = 4$

Interpretations of the definite integral

```
If f(x) \ge 0 on the interval [a, b] then \int_{a}^{b} f(x) dx
will represent ______
```

If f(x) is not entirely above the x-axis on the interval [a, b]then $\int_{a}^{b} f(x) dx$ will represent ______

Example: Use the graph of f(x) to answer these questions.

Find the area between f(x) and the x-axis from x = A to x = C.