Section 6.4: Definite Integral

Example: The following data gives the speed of a car x seconds after the car starts to stop. Estimate the distance the car travels during this time period.

x (seconds)	0	2	4	6	8
speed $(\mathrm{ft} / \mathrm{sec})$	50	40	25	10	0

The marginal revenue, in millions of dollars per year, for a product is given in the table.

year	1990	1991	1992	1993	1994
rate	3.3	2.2	2.8	2.9	2.4

Approximate the revenue for this product from 1990-1993.

Riemann Sums

Terminology:
$n=$ the number of rectangles
base of each rectangle $=\frac{b-a}{n}$
L_{n} is a left sum with n rectangles
R_{n} is a right sum with n rectangles
M_{n} is a midpoint sum with n rectangles
Example: Use the function $f(x)=x^{2}+1$ on the interval $[0,2]$ to answer the following.

Definition: Let $f(x)$ be a continuous function on $[a, b]$. The definite integral of f from a to b is defined and denoted in the following manner.

The integrand is $f(x)$, the lower limit of the integral is a, and the upper limit of the integral is b.

Example: Estimate $\int_{1}^{5} \ln \left(1+x^{2}\right) d x$ using 4 rectangles.

Properties of the definite integral

$$
\begin{array}{ll}
\int_{a}^{a} f(x) d x=0 & \int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x=\int_{a}^{c} f(x) d x \\
\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x & \int_{a}^{b} f(x)+g(x) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x \\
& \int_{a}^{b} k * f(x) d x=k \int_{a}^{b} f(x) d x
\end{array}
$$

Example: Use the fact that $\int_{a}^{b} g(x) d x=7$ and $\int_{a}^{b} f(x) d x=4$ to compute $\int_{a}^{b} 5 f(x)-2 g(x) d x=$

Interpretations of the definite integral

If $f(x) \geq 0$ on the interval $[a, b]$ then $\int_{a}^{b} f(x) d x$
will represent \qquad

If $f(x)$ is not entirely above the x -axis on the interval $[a, b]$
then $\int_{a}^{b} f(x) d x$ will represent \qquad

Example: Use the graph of $f(x)$ to answer these questions.

$$
\begin{array}{ll}
\int_{0}^{A} f(x) d x= & \int_{A}^{B} f(x) d x= \\
\int_{A}^{C} f(x) d x=
\end{array}
$$

$$
\int_{C}^{B} f(x) d x=
$$

\qquad

Find the area between $f(x)$ and the x-axis from $x=A$ to $x=C$.

