Section 7.2 (and 7.1): Applications of Area between Curves

Consumer and Producer Surplus

Definition: Consumer surplus is the total amount saved by consumers who were willing to pay a price higher that p_{o} but instead bought the item(s) at p_{o}.
This concept can be demonstrated on with the graph.

Example: The demand function, in dollars, for a product is given by $p=D(x)=-x^{2}-x+650$, where x is the number of items. Find the consumer surplus when the price is $\$ 560$.

Example: The demand function, in dollars, for a product is given by $p=D(x)=320 e^{-0.01 x}$, where x is the number of items. Find the consumer surplus when the demand is 100 items.

Definition: Producer surplus is the total increase in money realized by produces who were willing to sell at a price lower that p_{o} but instead sold the item(s) at p_{o}.

Example: The supply function, in dollars, for a product is given by $p=S(x)=0.2 x^{2}+15$, where x is the number of items. Find the produces surplus when $x=110$.

Example: Find the producer and consumer surplus at market equilibrium for
$D(x)=2528-0.01 x^{2}$
$S(x)=0.02 x^{2}+5$

Continuous Income Streams

Example: The rate of flow of income produced by a vending machine is $f(x)=3000 e^{0.057 x}$, where x is in years and $0 \leq x \leq 5$ and $f(x)$ is the flow in dollars/year.

What is the total income produce by the vending machine in these 5 years?

Suppose that we have an income stream $f(x)$ and this income stream is invested at $r \%$ continuous interest over T years. What is the future value of this income stream.

Example: Find the future value of the income stream provided by the vending machine if the income is invested at 4.5% compounded continuously.

Example: I am willing to sell this investment(now) for $\$ 16,000$. Would this be a good investment to buy?

Definition: The present value of an investment is the amount of money invested now at $r \%$ that will give the future value of the investment after T years.

Example: The continuous income stream of an investment is $f(x)=x^{3}-8 x^{2}+250$, where x is in months and $f(x)$ is in dollars per month. Assuming that current interest rate is 9% compounded continuously, find the future value and the present value of this investment if it is held 1.5 years.

Lorenz curve and Gini Index

The Lorenz curve, $y=f(x)$, is a function that represents income distribution in a society. Sometimes called a graphical representation of the cumulative distribution function of a probability distribution.
x represents the cumulative percentage of families at or below a given income level. y represents the cumulative percentage of total family income received.

Example: Read the value of $f(0.6)$ from the graph and explain its meaning.

Definition: The Gini index, gini coefficient, is a measure of the income distribution.
Gini index $=2 \int_{0}^{1} x-f(x) d x$

Example: The Lorenz curve for a country is given by $f(x)=x^{2.2}$. Calculate the Gini index.

Example: A study was conducted and it found that the distribution of income for stockbrokers, given by $f(x)$, and the distribution of income for teachers, given by $g(x)$, was the following

$$
f(x)=\frac{11 x^{2}}{12}+\frac{x}{12} \quad g(x)=\frac{5 x^{2}}{6}+\frac{x}{6}
$$

Determine which profession has the more equitable distribution of income.

