Section 8.2: Partial Derivatives

A partial derivative is a way to examine how a function changes when all of the variables except one are held constant.

Example: Find all first and second partials of these functions.
A) $f(x, y)=x^{2}+3 y^{2}+3 x^{2} y^{4}+7$
B) $f(x, y)=y^{4}-x^{2} y^{3}$
C) $\left(f(x, y)=\left(x^{2}+y^{2}\right)^{4}\right.$

Example: $f(x, y)=4 x^{0.3} y^{0.7}$ with x and y in millions.
A) Evaluate and interpret $f_{x}(5,1)$.
B) Compute the marginal productivity of capital when 5 million is spent on labor and 1 million is spent on capital.

Example: Find all first and second partials of $g=\frac{x-y}{x+y}$

Example: Find all first partials of $f=\ln \left(x^{2}-y^{3}+1\right)$

Example: Find all first partials of $h=y^{2} e^{4 x y^{2}}$

