Appendix J.1: Vectors

Definition: A vector is a quantity that has both a magnitude and a direction. A two-dimensional vector is an ordered pair $\mathbf{a}=\left\langle a_{1}, a_{2}\right\rangle$ of real numbers. The numbers a_{1} and a_{2} are called the components of a.

Example: Graph the vector $\langle 3,4\rangle$.

Example: For the points, $A(1,-2)$ and $B(5,4)$, find $\overrightarrow{A B}$ and $\overrightarrow{B A}$.

Definition: Given two points $J\left(a_{1}, a_{2}\right)$ and $K\left(b_{1}, b_{2}\right)$, then the vector represended by $\overrightarrow{J K}=$

Definition: The magnitude or length of a vector $\mathbf{a}=\left\langle a_{1}, a_{2}\right\rangle$ is
$|\mathbf{a}|=$

Example: Find the length of these vectors.
A) $\langle 4,6\rangle$
B) $\langle 0,0\rangle$

Scalar Multiplication: If c is a scalar and $\mathbf{a}=\left\langle a_{1}, a_{2}\right\rangle$, then we define the vector $c \mathbf{a}$ as
$c \mathbf{a}=$
$|c \mathbf{a}|=$

Definition: Two vectors, \mathbf{a} and \mathbf{b} are said to be parallel if there is some scalar c such that $\mathbf{a}=c \mathbf{b}$

Vector Addition/Subtraction: If $\mathbf{a}=\left\langle a_{1}, a_{2}\right\rangle$ and $\mathbf{b}=\left\langle b_{1}, b_{2}\right\rangle$ then the vector $\mathbf{a}+\mathbf{b}$ and $\mathbf{a}-\mathbf{b}$ are defined as
$\mathbf{a}+\mathbf{b}=$
$\mathbf{a}-\mathbf{b}=$

Example: Compute the following for $\mathbf{a}=\langle 3,4\rangle, \mathbf{b}=\langle 6,2\rangle, \mathbf{c}=\langle-2,5\rangle$
A) $\mathbf{a}+\mathbf{b}$
B) $2 \mathbf{a}+3 \mathbf{b}$
C) $\mathbf{a}-2 \mathbf{b}$

Example: Compute the following for $\mathbf{a}=\langle 3,4\rangle, \mathbf{b}=\langle 6,2\rangle, \mathbf{c}=\langle-2,5\rangle$
D) $3 \mathbf{a}-2 \mathbf{c}+\mathbf{b}$

Definition: A unit vector is a vector of length 1 . The vectors $\mathbf{i}=\langle 1,0\rangle$ and $\mathbf{j}=\langle 0,1\rangle$ are referred to as the standard basis vectors for the xy plane.

Example: Find a vector of length 7 that is in the same direction as $\mathbf{a}=\langle 3,4\rangle$

Example: Given the points $P(1,5)$ and $Q(3,10)$. Find a vector of length 4 that is in the same direction as $\overrightarrow{Q P}$.

Example: A pilot is flying in the direction of $\mathrm{N} 60^{\circ} \mathrm{W}$ at a speed of $250 \mathrm{~km} / \mathrm{hr}$.
A) Find the velocity vector.
B) If there is a wind blowing in the direction of $\mathrm{N} 45^{\circ} \mathrm{E}$ at $30 \mathrm{~km} / \mathrm{hr}$, find the true course and ground speed of the plane.

Example: A 50lb weight hangs from 2 wires. Find the tensions(forces) T_{1} and T_{2} in both wires and their magnitudes.

