Appendix J.2: The Dot Product

Definition: The dot product of two nonzero vectors \mathbf{a} and \mathbf{b} is the number

$$
\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta
$$

where θ is the angle between the vectors \mathbf{a} and $\mathbf{b}, 0 \leq \theta \leq \pi$. If either \mathbf{a} or \mathbf{b} is $\mathbf{0}$, then we define $\mathbf{a} \cdot \mathbf{b}=0$.

Example: Find $\mathbf{a} \cdot \mathbf{b}$ if $|\mathbf{a}|=4,|\mathbf{b}|=10$, and $\theta=\frac{\pi}{6}$

Example: Explaine what the dot product tells us if $\mathbf{a} \cdot \mathbf{b}$ is positive? is negative?

Definition: The work done by a force, \mathbf{F}, in moving an object from point P to point Q , or with displacement $\mathbf{D}=\overrightarrow{P Q}$, is given by $\mathbf{W}=\mathbf{F} \cdot \mathbf{D}$.

Example: Find the work of using a force of 10 N to move a block 3 meters if the force is applied at an angle of 25° to the ground. (Assume that the ground is level.)

Definition: Two non-zero vectors \mathbf{a} and \mathbf{b} are perpendicular (orthogonal) if and only if $\mathbf{a} \cdot \mathbf{b}=0$

Example: Are the vectors $\mathbf{a}=\langle 3,7\rangle$ and $\mathbf{b}=\langle-5,2\rangle$ orthogonal?

Definition: Alternate definition for the dot product of two vectors. For two vectors $\mathbf{a}=\left\langle a_{1}, a_{2}\right\rangle$ and $\mathbf{b}=\left\langle b_{1}, b_{2}\right\rangle$ then $\mathbf{a} \cdot \mathbf{b}=a_{1} * b_{1}+a_{2} * b_{2}$

Proof of alternate definition:(optional). Let $(a)=\left\langle a_{1}, a_{2}\right\rangle$ and $(b)=\left\langle b_{1}, b_{2}\right\rangle$

$$
\begin{aligned}
& |\mathbf{a}-\mathbf{b}|^{2}=|\mathbf{a}|^{2}+|\mathbf{b}|^{2}-2|\mathbf{a}||\mathbf{b}| \cos \theta \\
& |\mathbf{a}-\mathbf{b}|^{2}=|\mathbf{a}|^{2}+|\mathbf{b}|^{2}-2 \mathbf{a} \cdot \mathbf{b} \\
& \left(a_{1}-b_{1}\right)^{2}+\left(a_{2}-b_{2}\right)^{2}=a_{1}^{2}+a_{2}^{2}+b_{1}^{2}+b_{2}^{2}-2 \mathbf{a} \cdot \mathbf{b} \\
& 2 \mathbf{a} \cdot \mathbf{b}=a_{1}^{2}+a_{2}^{2}+b_{1}^{2}+b_{2}^{2}-\left(a_{1}^{2}-2 a_{1} b_{1}+b_{1}^{2}\right)-\left(a_{2}^{2}-2 a_{2} b_{2}+b_{2}^{2}\right) \\
& 2 \mathbf{a} \cdot \mathbf{b}=2 a_{1} b_{1}+2 a_{2} b_{2} \\
& \mathbf{a} \cdot \mathbf{b}=a_{1} b_{1}+a_{2} b_{2}
\end{aligned}
$$

Properties of the Dot Product: If \mathbf{a}, \mathbf{b}, and \mathbf{c} are vectors and m is a scalar, then
$\mathbf{a} \cdot \mathbf{a}=|\mathbf{a}|^{2}$
$\mathbf{a} \cdot \mathbf{b}=\mathbf{b} \cdot \mathbf{a}$
$\mathbf{0} \cdot \mathbf{a}=0$
$\mathbf{a} \cdot(\mathbf{b}+\mathbf{c})=\mathbf{a} \cdot \mathbf{b}+\mathbf{a} \cdot \mathbf{c}$ $(m \mathbf{a}) \cdot \mathbf{b}=m(\mathbf{a} \cdot \mathbf{b})=\mathbf{a} \cdot(m \mathbf{b})$

Definition: The orthogonal compliment of $\mathbf{a}=\left\langle a_{1}, a_{2}\right\rangle$ is $\mathbf{a}^{\perp}=\left\langle-a_{2}, a_{1}\right\rangle$

Example: What value(s) of x will make $\langle x, 4\rangle$ and $\langle x, 7 x\rangle$ orthogonal?

Example: A constant force $\mathbf{F}=2 \mathbf{i}+4 \mathbf{j}$, in Newtons, is used to move an object from $A(2,5)$ to $B(7,9)$. Find the work done if the distance between the points is measured in meters.

Example: Find the angle between $\mathbf{a}=3 \mathbf{i}+5 \mathbf{j}$ and $\mathbf{b}=4 \mathbf{i}+2 \mathbf{j}$.

Scalar Projection and Vector Projection

The vector projection of $\mathbf{b}=\overrightarrow{P R}$ onto $\mathbf{a}=\overrightarrow{P Q}$, denoted as proj $_{\mathbf{a}} \mathbf{b}$, is the vector $\overrightarrow{P S}$.

Example: Find the scalar projection and the vector projection of $\mathbf{b}=\langle 3,2\rangle$ onto $\mathbf{a}=\langle 4,6\rangle$

Example: Find a vector \mathbf{m} such that $\operatorname{comp}_{\mathbf{n}} \perp \mathbf{m}=2$ and $\mathbf{n}=\langle 5,12\rangle$

Example: Find the vector projection of $\mathbf{b}=\langle 3,2\rangle$ onto \mathbf{i}

Example: Find a unit vector in the same direction as the projection of $\mathbf{b}=\langle 5,1\rangle$ onto $\mathbf{a}=\langle-1,1\rangle$

Example: Using vectors, find the distance from the point $(1,0)$ to the line $y=2 x+4$

