Appendix J.3: Vector Functions

A vector function is a way to describe the a graph, or path of an object, using vectors. Vector functions are basically the same as parametric curves.

Example: Find a vector function that represents the function $y=x^{2}+1$.

Example: Use the vector function $\mathbf{r}(t)=t^{2} \mathbf{i}+(t+2) \mathbf{j}$ to answer the following.
A) Is the point $(4,5)$ on the graph of $\mathbf{r}(t)$? Justify your answer.
B) Sketch the graph of $\mathbf{r}(t)$.

t	x	y
-3	9	-1
-2	4	0
-1	1	1
0	0	2
1	1	3
2	4	4
3	9	5

C) Find the Cartesian equation of $\mathbf{r}(t)$.

Example: Examine the vector function $\mathbf{r}(\theta)=\langle\sin \theta, \cos \theta\rangle$ where $\frac{-\pi}{2} \leq \theta \leq \frac{\pi}{2}$

Example: Find the Cartesian equation of for parametric function.
$x=\sin (2 \theta)$
$y=\sin (\theta)$

Example: Sketch the graph of the parametric curve. Give the Cartesian equation.
$x=4 \sin (t), \quad y=3+4 \cos (t)$

Vector equation of a line

Example: Find a vector equation of the line through the points $A(1,4)$ and $B(3,9)$.

Example: Find a vector equation of the line $y=7 x+5$

Example: Are these lines parallel, orthogonal or neither? If they are not parallel, find the intersection point of these lines.
$\mathbf{L}_{\mathbf{1}}(t)=(1+4 t) \mathbf{i}+(9+16 t) \mathbf{j}$
$\mathbf{L}_{\mathbf{2}}(s)=(-1+3 s) \mathbf{i}+(25-6 s) \mathbf{j}$

