Appendix K.2: Slopes and Tangents of Parametric Curves

Suppose that a curve, \mathbf{C}, is described by the parametric equations $x=x(t)$ and $y=y(t)$ or the vector function $\mathbf{r}(t)=\langle x(t), y(t)\rangle$ where both $x(t)$ and $y(t)$ are differentiable. Then the slope of the tangent line is given by

$$
\text { slope }=\frac{y^{\prime}(t)}{x^{\prime}(t)}
$$

$\frac{d y}{d x}=$

Example: Find $\frac{d y}{d x}$ and $\left.\frac{d y}{d x}\right|_{t=3}$ and $\left.\frac{d y}{d x}\right|_{(5,-1)}$
$x(t)=t^{3}-3 t^{2}+5$
$y(t)=2 t-7$

Example: Find the equation of the tangent line at $t=0$.
$x(t)=e^{t^{2}+4 t}$
$y(t)=5^{3 t+2}$

Example: Compute the derivatives at the point $(0,0)$.
$x(t)=\sin (2 t)$
$y(t)=\cos (t)$

Horizontal tangent lines

Vertical tangent lines

Example: Find the points on the curve where the tangent lines are horizontal and where they are vertical.
$x=t^{2}+t$
$y=t^{2}-t$

Example: Find the values of t where the tangent lines are horizontal and where they are vertical.
$x=t+3$
$y=t^{3}-3 t^{2}$

