Section 2.2: The Limit of a Function

A limit is way to discuss how the values of a function(y-values) are behaving when x gets close to the number a. There are three forms to the limit.
$\lim _{x \rightarrow a^{-}} f(x)$
$\lim _{x \rightarrow a^{+}} f(x)$
$\lim _{x \rightarrow a} f(x)$

We write $\lim _{x \rightarrow a^{-}} f(x)=L$ and say "the limit of $f(x)$ as x approaches a from the left, equals L "

Evaluating Limits Graphically

Example: Use the graph to answer the following questions.

$\lim _{x \rightarrow-1^{-}} f(x)=$
$\lim _{x \rightarrow-1^{+}} f(x)=$
$\lim _{x \rightarrow-1} f(x)=$
$\lim _{x \rightarrow 1^{-}} f(x)=$
$\lim _{x \rightarrow 1^{+}} f(x)=$
$\lim _{x \rightarrow 1} f(x)=$
$f(1)=$
$\lim _{x \rightarrow 5^{-}} f(x)=$
$\lim _{x \rightarrow 5^{+}} f(x)=$
$\lim _{x \rightarrow 5} f(x)=$
$f(5)=$

Example: Use the graph to answer the following questions.

$$
\begin{array}{lll}
\lim _{x \rightarrow-3^{-}} f(x)= & \lim _{x \rightarrow 4^{-}} f(x)= & \lim _{x \rightarrow \infty} f(x)= \\
\lim _{x \rightarrow-3^{+}} f(x)= & \lim _{x \rightarrow 4^{+}} f(x)= & \lim _{x \rightarrow-\infty} f(x)=
\end{array}
$$

$$
\lim _{x \rightarrow-3} f(x)=
$$

$$
\lim _{x \rightarrow 4} f(x)=
$$

Definition: $x=a$ is said to be a vertical asymptote of the function $f(x)$ provided that at least one of the following statements is true:

$$
\begin{array}{ll}
\lim _{x \rightarrow a^{-}} f(x)=\infty & \lim _{x \rightarrow a^{+}} f(x)=\infty \\
\lim _{x \rightarrow a^{-}} f(x)=-\infty & \lim _{x \rightarrow a^{+}} f(x)=-\infty
\end{array}
$$

Evaluating Limits with Tables

Example: Compute the limit.
$\lim _{x \rightarrow 0} \frac{\sqrt{x^{2}+16}-4}{x^{2}}=$

x	$f(x)$
1	0.1231056
0.5	0.124515
0.1	0.1249804
0.05	0.1249951
0.001	0.1249998

x	$f(x)$
-1	0.1231056
-0.5	0.124515
-0.1	0.1249804
-0.05	0.1249951
-0.001	0.1249998

Example: Compute the limit.
$\lim _{x \rightarrow 0} \sin \left(\frac{\pi}{x}\right)=$

Example: Evaluate these limits.
A) $\lim _{x \rightarrow 4^{+}} \frac{1}{x-4}=$
B) $\lim _{x \rightarrow 0} \frac{1}{x^{2}}=$
C) $\lim _{x \rightarrow 0} \frac{1}{x^{3}}=$

