Section 2.5: Continuity

Definition: A function f is continuous at a number $x=a$ if $\lim _{x \rightarrow a} f(x)=f(a)$

Example: Is the function $f(x)=x^{2}+1$ continuous at $a=3$, i.e. at $x=3$?

Example: Where is the function $f(x)$ discontinuous? Explain what type of discontinuity happens at that value of x .

Definition: A function f is continuous from the right at a number a if $\lim _{x \rightarrow a^{+}} f(x)=f(a)$.
A function f is continuous from the left at a number a if $\lim _{x \rightarrow a^{-}} f(x)=f(a)$.

A function f is continuous on an interval if it is continuous at every number in the interval. At the endpoint of the interval we understand continuous to mean left or right continuity.

Example: Discuss the continuity of the function $f(x)=\frac{x+5}{x-4}$.

Example: Discuss the continuity of the function $f(x)=\frac{x^{2}+x-2}{x-1}$.

Example: What would you define $f(1)$ to make the function continuous? i.e. Find the value of A so that $f(x)$ is continuous.
$f(x)= \begin{cases}\frac{x^{2}+x-2}{x-1} & \text { if } x \neq 1 \\ A & \text { if } x=1\end{cases}$

Example: Find the values where $f(x)$ is not continuous. Then classify the value(s) as a vertical asymptote or removable discontinuity.
$f(x)=\frac{x^{2}+2 x}{x^{4}-3 x^{3}-10 x^{2}}$

Example: Find the value(s) where $f(x)$ is not continuous.
$f(x)= \begin{cases}3 x+1 & \text { if } x \leq 1 \\ 2 x & \text { if } x>1\end{cases}$

Example: Find the value(s) where $f(x)$ is not continuous.
$f(x)= \begin{cases}3 x & \text { if } x<2 \\ x+4 & \text { if } x>2\end{cases}$

Example: Find the value(s) of A that will make $g(x)$ a continuous function.
$g(x)= \begin{cases}A^{2} x & \text { if } x \leq 1 \\ 3 A x-2 & \text { if } x>1\end{cases}$

Example: Find the value(s) where $f(x)$ is not continuous.
$f(x)= \begin{cases}3 x^{2}+4 x+1 & \text { if } x \leq 2 \\ \frac{5 x^{2}+1}{x-1} & \text { if } x>2\end{cases}$

Intermediate Value Theorem: Suppose that f is continuous on the closed interval $[a, b]$ and let N be any number such that N is strictly between $f(a)$ and $f(b)$. There there exist a number c with $a<c<b$ such that $f(c)=N$.

Example: Use the Intermediate Value Theorem to show that there is areal number a such that $f(a)=12$.
$f(x)=-x^{4}+3 x^{3}+5$

Example: Show that $f(x)=x^{4}-5 x^{2}$ and $g(x)=2 x^{3}-4 x+6$ intersect between $x=3$ and $x=4$.

Example: A student did the following work on a question on an exam. The student showed that $f(1)=1$ and $f(-1)=-1$ for the given function and then claimed by the Intermediate Value Theorem that there was some number c with $-1<c<1$ such that $f(c)=0$. Did the student receive full credit on this problem?

