Section 2.7: Tangents, Velocities, and Other Rates of Change

Definition: The instantaneous rate of change of a function $f(x)$ at $x=a$ is the slope of the tangent line at $x=a$ and is denoted $f^{\prime}(a)$.

(A) Tangent line for a circle

(B) Tangent tines for the graph of a function

Example: Use this graph to answer these questions.
A) Estimate the instantaneous rate of change at $x=1$.
B) Find the equation of the tangent line at $x=1$.
C) At what values of x does $f(x)$ have an instantaneous rate of change of 0 ?

Example: Find the average rate of change of $f(x)=2 x^{2}-x$ from
A) $x=1$ to $x=6$
B) $x=1$ to $x=5$
C) $x=1$ to $x=3$

Definition: The slope of the tangent line(instantaneous rate of change) at $x=a$ is $m_{\text {tan }}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$

Example: Find the slope of the tangent line for $f(x)=2 x^{2}-x$ at $x=1$. Also give the equation of the tangent line at $x=1$.

Example: Find the instantaneous rate of change at $x=9$ for $f(x)=\sqrt{x}$.

