## Section 2.8: Derivative

**Definition:** The **derivative of a function** f at a number a, denoted f'(a), is

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h}$$

Example: Find the derivative of  $f(x) = \frac{2}{x+5}$  at a = 0, a = 2, a = 3, a = -5.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Other common notations for the derivative are f',  $\frac{dy}{dx}$ , and  $\frac{d}{dx}f(x)$ 

Note: Once you have the function f'(x), also called the **first derivative**, you can redo the derivative process with that function and compute the **second derivative** (notation: f''(x), y'',  $\frac{d^2y}{dx^2}$ ...).

Example: For the function  $f(x) = \frac{2}{x+5}$ , find the equation of the tangent line at x = 3.

**Example:** Here is the graph of f(x). Where does the derivative not exist?



**Definition:** f(x) is said to be **differentiable** at x = a provided that f'(a) exists. f(x) is differentiable on an open interval (a, b) provided it is differentiable at every number in the interval.

**Theorem:** If f is differentiable at a, then f is continuous at a.

Example: Sketch the graph of f(x) and use this graph to find f'(x). Give the values where f(x) is not continuous and where it is not differentiable.

f(x) = |2x - 4|

Example: Sketch the graph of the derivative for these graphs.



Example: Use the definition of the derivative to find g'(x) for  $g(x) = 3x^2 + 2x + 7$ 

Example: Use the definition of the derivative to find g'(x) for  $g(x) = \sqrt{3x+5}$ .