Section 2.8: Derivative

Definition: The derivative of a function f at a number a, denoted $f^{\prime}(a)$, is

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

Example: Find the derivative of $f(x)=\frac{2}{x+5}$ at $a=0, a=2, a=3, a=-5$.

Definition of the Derivative: The derivative of a function $f(x)$, denoted $f^{\prime}(x)$ is
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
Other common notations for the derivative are $f^{\prime}, \frac{d y}{d x}$, and $\frac{d}{d x} f(x)$
Note: Once you have the function $f^{\prime}(x)$, also called the first derivative, you can redo the derivative process with that function and compute the second derivative (notation: $f^{\prime \prime}(x), y^{\prime \prime}, \frac{d^{2} y}{d x^{2}} \ldots$).

Example: For the function $f(x)=\frac{2}{x+5}$, find the equation of the tangent line at $x=3$.

Example: Here is the graph of $f(x)$. Where does the derivative not exist?

Definition: $f(x)$ is said to be differentiable at $x=a$ provided that $f^{\prime}(a)$ exists. $f(x)$ is differentiable on an open interval (a, b) provided it is differentiable at every number in the interval.

Theorem: If f is differentiable at a, then f is continuous at a.

Example: Sketch the graph of $f(x)$ and use this graph to find $f^{\prime}(x)$. Give the values where $f(x)$ is not continuous and where it is not differentiable.
$f(x)=|2 x-4|$

Example: Sketch the graph of the derivative for these graphs.

Example: Use the definition of the derivative to find $g^{\prime}(x)$ for $g(x)=3 x^{2}+2 x+7$

Example: Use the definition of the derivative to find $g^{\prime}(x)$ for $g(x)=\sqrt{3 x+5}$.

