Section 3.10: Linear approximation and Differentials

Linear Approximation

Definition The formula L(x) = f(a) + f'(a)(x-a) is called the **linear approximation** or **lineariza**tion of f(x) at x = a.

Example: Use $y = e^x$ to answer these questions.

A) Find the linearization at a = 0.

B) Use the linearization to approximate e^1 and $\frac{1}{e^{\cdot 25}}$

C) Find the values of x where the approximation is accurate to within 0.4.

Example: Find the linearization of $y = \cos(x)$ at $a = 60^{\circ}$. Use it to estimate $\cos(61^{\circ})$ and $\cos(59^{\circ})$.

Example: Use $y = \sqrt{x+7}$ to answer these questions.

A) Find the linearization at a = 2

B) Evaluate $\sqrt{9.06}$ and $\sqrt{11}$

C) Find the values of x where the approximation is accurate to within 0.5.

Example: Find dy and evaluate dy for the values of x = 2 and dx = 0.3.

 $y = x^3 + 2x + 7$

Example: Find dy and evaluate dy for the values of x = 1 and dx = 0.4.

 $y = \sqrt{x^2 + 3}$

Example: The edge of a cube is measured to be 20 inches with a maximum error of 0.1 inches. What is the maximum error in the volume? What is the relative error? What is the percentage error?

Example: Use differentials to estimate the amount of paint needed to apply a coat of paint 0.05 cm thick to a hemispherical dome with radius of 25 m.