Section 3.10: Linear approximation and Differentials

Linear Approximation

Definition The formula $L(x)=f(a)+f^{\prime}(a)(x-a)$ is called the linear approximation or linearization of $f(x)$ at $x=a$.

Example: Use $y=e^{x}$ to answer these questions.
A) Find the linearization at $a=0$.
B) Use the linearization to approximate e^{1} and $\frac{1}{e^{.25}}$
C) Find the values of x where the approximation is accurate to within 0.4.

Example: Find the linearization of $y=\cos (x)$ at $a=60^{\circ}$. Use it to estimate $\cos \left(61^{\circ}\right)$ and $\cos \left(59^{\circ}\right)$.

Example: Use $y=\sqrt{x+7}$ to answer these questions.
A) Find the linearization at $a=2$
B) Evaluate $\sqrt{9.06}$ and $\sqrt{11}$
C) Find the values of x where the approximation is accurate to within 0.5 .

Definition let $y=f(x)$, where f is a differentiable function. Then the differential $d x$ is an independent variable; that is $d x$ can be given the value of any real number. The differential dy is then defined in terms of $d x$ by the equation $d y=f^{\prime}(x) d x$.

Example: Find $d y$ and evaluate $d y$ for the values of $x=2$ and $d x=0.3$.
$y=x^{3}+2 x+7$

Example: Find $d y$ and evaluate $d y$ for the values of $x=1$ and $d x=0.4$.
$y=\sqrt{x^{2}+3}$

Example: Use differentials to estimate $\sqrt[4]{16.1}$.

Example: The edge of a cube is measured to be 20 inches with a maximum error of 0.1 inches. What is the maximum error in the volume? What is the relative error? What is the percentage error?

Example: Use differentials to estimate the amount of paint needed to apply a coat of paint 0.05 cm thick to a hemispherical dome with radius of 25 m .

