Section 3.9: Related Rates

Example: Find $\frac{d x}{d t}$ when $y=3$ and $\frac{d y}{d t}=5$
$4 x^{3}-5 y^{2}=-13$

Example: At noon ship A leaves a port traveling North at $35 \mathrm{~km} / \mathrm{hr}$. Ship B leaves the same port traveling East at 1 pm at $25 \mathrm{~km} / \mathrm{hr}$. At what rate is the distance between them changing at 3 pm ?

Example: A person 1.8 meters tall is walking away from a 5 meter high lamppost at a rate of $2 \mathrm{~m} / \mathrm{sec}$. At what rate is the end of the person's shadow moving away from the lamppost when the person in 6 meters from the lamppost?

Example: A water tank has the shape of an inverted right circular cone of altitude 12 ft and base radius of 6 ft . If water is being pumped into the tank at a rate of $10 \mathrm{gal} / \mathrm{min}$ (approximately 1.337 cubic feet per min) approximate the rate at which the water level is rising when the water is 3 feet deep.

Example: A swimming pool is 20 ft wide, 40 ft long, 3 ft deep at the shallow end and 9 ft deep at its deepest point. See the figure for a cross section. If the pool is being filled at a rate of 180 cubic feet per min, how fast is the water level rising when the depth at the deepest point is 4 ft ?

Example: A revolving beacon in a lighthouse makes one revolution every 15 seconds. The beacon is 200 ft from the nearest point P on a straight shoreline. Find the rate at which a ray from the light moves along the shore at a point 400 ft from P .

Example: At noon, ship A is 100 km north of ship B. Ship A travels west at $35 \mathrm{~km} / \mathrm{hr}$ and ship B is traveling east at $25 \mathrm{~km} / \mathrm{hr}$. Find how the distance between the ships is changing at 3 pm .

Example: Two sides of a triangle have fixed lengths of 3 ft and 7 ft . The angle between these sides is decreasing at a rate of $0.05 \mathrm{rad} / \mathrm{sec}$. Find the rate at which the area of the triangle is changing when the angle between the fixed sides is 1 radian.

