Section 4.1-4.3 Part 1: What Does f^{\prime} and $f^{\prime \prime}$ say about f ?
Definition: A function is said to be increasing on an interval if for a and b in the interval with $a<b$, then $f(a)<f(b)$. A function is said to be decreasing on an interval if for a and b in the interval with $a<b$, then $f(a)>f(b)$.

Definition: A critical number (critical value) is a number, c, in the domain of f such that

Definition: A function has a local maximum (relative maximum) at c if $f(c) \geq f(x)$ on an open interval that contains c, i.e. when x is near c. The value of the local maximum is $f(c)$.
Similarly, a function has a local minimum (relative minimum) at c if $f(c) \leq f(x)$ on an open interval that contains c. The value of the local minimum is $f(c)$.

Discuss the properties of the the derivate $f^{\prime}(x)$ and how it relates to the properties of $f(x)$.

Example: Here is the graph of $f^{\prime}(x)$.

A) Where is $f(x)$ increasing?
B) Where is $f(x)$ decreasing?
C) Where does $f(x)$ have a local minimum?
D) Where does $f(x)$ have a local maximum?
E) Sketch a possible graph of $f(x)$.

Example: Here is the graph of $f^{\prime}(x)$. The domain of $f(x)$ is all real numbers.

A) Where is $f(x)$ increasing?
B) Where is $f(x)$ decreasing?
C) Where does $f(x)$ have a local minimum?
D) Where does $f(x)$ have a local maximum?
E) Sketch a possible graph of $f(x)$.

Example: Examine the concavity of the function $f(x)$.

Definition: An inflection point is a point on the graph of $f(x)$ where $f(x)$ changes concavity.

Discuss the properties of the the derivate $f^{\prime \prime}(x)$ and how it relates to concavity of $f(x)$.

Example: Here is the graph of $f^{\prime \prime}(x)$.

A) Where is $f(x)$ concave up?
B) Where is $f(x)$ concave down?
C) Find all x-values of the inflection points.

Example: Here is the graph of $f^{\prime}(x)$.

A) Where is $f(x)$ concave up?
B) Where is $f(x)$ concave down?
C) Find all x-values of the inflection points.

Example: Sketch the graph of a function that meets these conditions.
Continuous and differentiable for all real numbers.
$f^{\prime}(-1)=0$ and $f^{\prime}(5)=0$
$f^{\prime}(x)>0$ on $(-1,5),(5, \infty)$
$f^{\prime}(x)<0$ on $(-\infty,-1)$
$f^{\prime \prime}(x)>0$ on $(-\infty, 2),(5, \infty)$
$f^{\prime \prime}(x)<0$ on $(2,5)$

Example: Sketch the graph of a function that meets these conditions.

$$
\begin{aligned}
& f^{\prime}(1)=0, f(0)=1, \lim _{x \rightarrow \infty} f(x)=3 \\
& f^{\prime}(x)>0 \text { on }(0,1) \\
& f^{\prime}(x)<0 \text { on }(-\infty, 0),(1, \infty) \\
& f^{\prime \prime}(x)<0 \text { on }(0,2) \\
& f^{\prime \prime}(x)>0 \text { on }(-\infty, 0),(2, \infty)
\end{aligned}
$$

