## Sections 4.1-4.3 Part 2: Increase, Decrease, Concavity, and Local Extrema

Definition: A critical number (critical value) is a number, $c$, in the domain of $f$ such that $f^{\prime}(c)=0$ or $f^{\prime}(c)$ DNE.

If $f$ has a local extrema (local maxima or minima) at $c$ then $c$ is a critical value of $f(x)$.
Fermat's Theorem: If $f$ has a local maximum or minimum at $c$, and if $f^{\prime}(c)$ exists, then $f^{\prime}(c)=0$.

Example: Find the intervals where the function is increasing and the intervals where it is decreasing. Classify all critical values.
A) $y=x^{3}+3 x^{2}-9 x+8$
B) $y=3 x^{5}-20 x^{3}+20$
C) $y=\frac{x^{2}+1}{x}$
D) $y=\left(x^{2}-16\right)^{2 / 3}$
E) $y=x \ln (x)$
F) $y^{\prime}=\frac{(x-4)^{3}(x+2)^{2}}{(x-1)}$ with the domain of $y$ being all real numbers except $x=1$.

Definition: $x=c$ is a possible inflection value (piv) provided that $x=c$ is in the domain of $f(x)$ and $f^{\prime \prime}(c)=0$ or $f^{\prime \prime}(c)$ DNE.

Example: Find the intervals where the function is concave up and the intervals where it is concave down. Find the x-coordinate of the inflection points.
$y=x^{5}-5 x^{4}+10 x+5$

Example: Find the values of $a$ and $b$ so that $f(x)=a x^{2}-b \ln (x)$ will have an inflection point at $(1,5)$

Example: The domain of the function $f(x)$ is all real numbers except $x=-5$. Use this information as well as $f^{\prime}$ and $f^{\prime \prime}$ to sketch a possible graph for $f(x)$.

$$
f^{\prime}(x)=\frac{-3 x+7}{(x+5)^{3}} \quad f^{\prime \prime}(x)=\frac{6(x-6)}{(x+5)^{4}}
$$

Second Derivative Test: Suppose that $f^{\prime \prime}$ is continuous near the critical value $c$.
(a) If $f^{\prime \prime}(c)>0$ then $f(x)$ has a $\qquad$ at $x=c$.
(b) If $f^{\prime \prime}(c)<0$ then $f(x)$ has a $\qquad$ at $x=c$.
(c) If $f^{\prime \prime}(c)=0$ then no conclusion can be made.

Example: Suppose that $f$ has critical values of $x=0, x=2$, and $x=-2$. If $f^{\prime \prime}(x)=60 x^{3}-120 x$, what conclusion can be drawn about the critical values?

Example: What conclusion can be made if you know that $g^{\prime \prime}(5)=7$ ?

