Sections 4.1-4.3 Part 3: Absolute Maximum/Minimum and other Theorems

Absolute Maxima and Minima

Definition: Let c be a number in the domain of a function f. Then $f(c)$ is the

- absolute maximum value of f if $f(c) \geq f(x)$ for all x in the domain.
- absolute minimum value of f if $f(c) \leq f(x)$ for all x in the domain.

Abs $\min f(a)$
abs max $f(d)$
loc $\min f(c), f(e)$
loc max $f(b), f(d)$

Example: Find the absolute max and the absolute min.
A) $y=x^{3}+3 x^{2}+1$
B) $y=x^{4}-4 x^{3}$
C) $y=7+3 \sin (x+10)$

The Extreme Value Theorem: If f is a continuous on a closed interval $[a, b]$, then f will have both an absolute max and an absolute min. They will happen at either critical values in the interval or at the ends of the interval, $x=a$ or $x=b$.

Restricted Domains:

Example: For the function, find the absolute max and the absolute min on the indicated interval.

$$
f(x)=12 x^{2}-2 x^{3}+1
$$

$$
f^{\prime}(x)=24 x-6 x^{2}=6 x(4-x)
$$

A) $[2,5]$
B) $[-3,5]$
C) $(-3,5]$

Example: For the function, find the absolute max and the absolute min on the interval $[0,5]$.
$f(x)=\frac{1}{(x-4)^{2}}$

Rolle's Theorem: Let f be a function that satisfies the following three hypotheses:

1) f is continuous on the closed interval $[a, b]$.
2) f is differentiable on the open interval (a, b).
3) $f(a)=f(b)$

Then there is a number c between a and b such that $f^{\prime}(c)=0$.

The Mean Value Theorem: Let f be a function that satisfies the following hypotheses:

1) f is continuous on the closed interval $[a, b]$.
2) f is differentiable on the open interval (a, b).

Then there is a number c between a and b such that
$f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$

Example: Find a number c that satisfies the conclusion of the Mean Value Theorem on the interval [0, 2].
$f(x)=x^{3}+x-1$

Example: You enter a toll road at 8 am and then exit it at 9:15am. The distance between the entrance and exit is 100 miles. If the maximum speed is set at 70 mph , do you get charged for speeding?

