Sections 4.7: Optimization Problems

Example: Find two numbers whose difference is 65 and whose product is a minimum.

Example: Find the point on the parabola $y=x^{2}+1$ that is closest to the point $(3,1)$

Example: A circular cylindrical metal container, open at the top, is to have a capacity of $192 \pi \mathrm{in}^{3}$. the cost of the material used for the bottom of the container is 15 cents per in ${ }^{2}$, and that of the material used for the side is 5 cents per in ${ }^{2}$. If there is no waste of material, find the dimensions that will minimize the cost of the material.

Example: Find the area of the largest rectangle that can be inscribed in $\frac{x^{2}}{4}+\frac{y^{2}}{16}=1$

Example: A piece of wire 20 feet long is cut into two pieces. One piece is bent into a square and the other is bent into an equilateral triangle. How should the wire be cut so that the total area enclosed is (a) a maximum? (b) a minimum?

Setup the formula that you would use to solve these problems. Give the domain of the function.

Example: A poster is to have an area of $240 \mathrm{in}^{2}$ with a 2 -inch margin at the bottom and the sides and a 3 -inch margin at the top. What dimensions of the poster will give the largest printed area?

Example: A window has the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 ft , find the dimensions of the rectangle that will produce the largest area for the window.

