Sections 5.3: The Fundamental Theorem of Calculus

Definition: The indefinite integral of f is used to indicate the process of finding the antiderivative of f. i.e. $\int f(x) d x=F(x)+C$

Example: Compute.
A) $\int 2 x^{5}+7 x+4 d x=$
B) $\int 3 x^{2} d a=$
C) $\int \frac{x^{2}+2 x^{5}+7 x^{3}+4}{4 x^{3}} d x$

The Fundamental Theorem of Calculus, Part 2 If f is continuous on $[a, b]$, then
$\int_{a}^{b} f(x) d x=F(b)-F(a), \quad$ where F is any antiderivative of f.
Example: Compute the following.
A) $\int_{1}^{5} 3 x^{2}+4 x+2 d x=$
B) $\int_{0}^{4} 3 x+8 e^{4 x} d x=$
C) $\int_{-2}^{5} \frac{1}{x^{2}} d x=$
D) $\int_{0}^{3}\left|x^{2}-4\right| d x=$
E) $\int_{4}^{9}\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^{2} d x=$

Example: Sketch the region enclosed by $y=\sqrt{x}, y=0$, and $x=4$ and calculate its area.

The Fundamental Theorem of Calculus, Part 1 If f is continuous on $[a, b]$, then the function g defined by
$g(x)=\int_{a}^{x} f(t) d t, \quad$ with $a \leq x \leq b$
is continuous on $[a, b]$ and is differentiable on (a, b), and $g^{\prime}(x)=f(x)$

Example: Find $g^{\prime}(x)$.
A) $g(x)=\int_{a}^{x} t^{2}+1 d t$
B) $g(x)=\int_{4}^{x^{2}} \tan ^{3}(t) d t$
C) $g(x)=\int_{x^{3}}^{2} \ln (u) d u$
D) $g(x)=\int_{x^{2}}^{x^{3}+1} u^{5}+2 d u$

Example: Define $g(a)$ by $g(a)=\int_{0}^{a} f(x) d x$ where $f(x)$ is the graph given below.

1) Compute $g(10)$ and $g(20)$.
2) Find the intervals where $g(a)$ is increasing.
3) If possible, give the values of the absolute maximum and absolute minimum.

