Section 3.2: Additional Problems

1. Find the equation of the tangent line and the normal line at $x=2$ for $f(x)=\frac{x}{x-1}$
2. Find the value(s) of x where the tangent line to $f(x)=\frac{x}{x-1}$ will go through the point $(6,-2)$. Show the work that verifies your answers.
3. Find $\frac{d^{2} y}{d x^{2}}$ for $y=\frac{x^{2}+5}{x+7}$

In problems 4-10 find the derivative. You do not have to simplify.
4. $y=\left(x^{7}+3 x^{4}+5\right)\left(x^{8}+7 x+1\right)$
5. $y=\left(x^{9}+\frac{1}{x^{5}}\right)\left(x^{-3}-2 x^{-2}\right)$
6. $y=\left(x^{3}+4 x+2\right) e^{x}$
7. $f(x)=\left(x^{3}+5 x^{2}+1\right) \log _{4} x$
8. $y=\frac{x^{4}+7 x^{2}+8}{x^{5}+5 x^{3}+6}$
9. $y=\frac{3^{x}+7 x}{x^{4}+7 x^{3}+5}$
10. $f(x)=\frac{x^{4} e^{x}}{x^{5}+7 x}$

Problems 11-14 refer to the functions f and g that satisfy the properties as shown in the table. Find the indicated quantity.

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
0	1	-3	3	5
1	2	6	7	11
2	-5	0	2	10
3	4	-1	-4	8

Note: The table shows that $f^{\prime}(3)=-1, g(1)=7$
11. $J^{\prime}(0)$ if $J(x)=f(x) g(x)$
12. $H^{\prime}(3)$ if $H(x)=\left(x^{3}-7 x+3\right) g(x)$
13. $K^{\prime}(1)$ if $K(x)=\frac{x^{3}+\ln (x)}{f(x)}$
14. $M^{\prime}(2)$ if $M(x)=\frac{e^{x}}{f(x)+g(x)}$

For problems 15-17, find the values of x where the tangent line is horizontal.
15. $y=\frac{-x+2}{x^{2}+12}$
16. $y=\frac{1}{x^{2}-6 x+10}$
17. $y=\frac{3}{x^{2}+10 x}$
18. Find the value(s) of x where $y=\frac{2 x+3}{x+4}$ has an instantaneous rate of change of 5 .
19. Find the value(s) of x where $y=\frac{-x+3}{x-5}$ has an instantaneous rate of change of 2 .

