Section 3.9: Additional Problems

1. Find $\frac{d x}{d t}$ when $y=2$ and $\frac{d y}{d t}=-3$

$$
x^{2}+2 x y^{2}+y^{3}=8
$$

2. The length of a rectangle is increasing at a rate of $5 \mathrm{~cm} / \mathrm{sec}$ and its width is decreasing at a rate of $4 \mathrm{~cm} / \mathrm{sec}$. When the length is 10 cm and the width is 20 cm , what is the rate of change of the area of the rectangle?
3. Noah travels due north and Eddie travels due east from a common starting point. At time t (in seconds), Noah's distance(in feet) from the starting location is y and Eddie's distance from the starting location is x. At what rate is the distance between Noah and Eddie changing after 2 seconds?

$$
\begin{aligned}
& y=10+4 t+\frac{1}{2} t^{2} \\
& x=7+t^{3}
\end{aligned}
$$

