Section 4.1-4.3 Part 1 : Additional Problems

1. Assume that the graph is of $f^{\prime}(x)$ and the domain of $f(x)$ is all real numbers.

(a) On what intervals is $f(x)$ increasing?
(b) On what intervals is $f(x)$ decreasing?
(c) Give the critical values for $f(x)$ and classify them as local maximum, local minimum, or neither.
(d) Which is larger? $f(b)$ or $f(c)$
2. Assume that the graph is of $f^{\prime}(x)$ and the domain of $f(x)$ is all real numbers except for $x=e$

(a) On what intervals is $f(x)$ increasing?
(b) On what intervals is $f(x)$ decreasing?
(c) Give the critical values for $f(x)$ and classify them as local maximum, local minimum, or neither.
3. Assume that the graph is of $f^{\prime}(x)$ and the domain of $f(x)$ is all real numbers.

(a) On what intervals is $f(x)$ concave up?
(b) On what intervals is $f(x)$ concave down?
(c) Give the x-values of the inflection points for $f(x)$.

For problems 4-12, sketch a graph of a function that has all of the listed properties.
4. Continuous for all real numbers.

Differentiable for all real numbers.
$f^{\prime}(-1)=0, f^{\prime}(1)=0$
$f(-1)=4, f(1)=0$.
$f^{\prime}(x)<0$ on $(-1,1)$.
$f^{\prime}(x)>0$ on $(-\infty,-1)$ and $(1, \infty)$.
$f^{\prime \prime}(x)<0$ on $(-\infty, 0)$.
$f^{\prime \prime}(x)>0$ on $(0, \infty)$.
5. Continuous for all real numbers.

Differentiable for all real numbers.
x-intercepts 0,4 , and -4 .
$f^{\prime}(2)=0, f^{\prime}(-2)=0 . f^{\prime \prime}(0)=0$

6. Continuous for all real numbers except $x=3$

Differentiable for all real numbers except $x=3$ critical value at $x=5$
$\lim _{x \rightarrow \infty} f(x)=0 . \lim _{x \rightarrow-\infty} f(x)=0$

7. Continuous for all real numbers except $x=-2,0,2$

Differentiable for all real numbers except $x=-2,0,2$
Inflection points at $(-1,0)$ and $(1,0)$.
Vertical Asymptote: $x=-2, x=2$, and $x=0$.
$\lim _{x \rightarrow \infty} f(x)=0$ and $\lim _{x \rightarrow-\infty} f(x)=0$
$f^{\prime}(x)<0$ on $(-\infty,-2)$ and $(-2,0)$.
$f^{\prime}(x)>0$ on $(0,2)$ and $(2, \infty)$.
$f^{\prime \prime}(x)>0$ on $(-2,-1)$ and $(1,2)$.
$f^{\prime \prime}(x)<0$ on $(-\infty,-2),(-1,0),(0,1)$, and $(2, \infty)$.
8. Domain: all real numbers except $x=2$ and $x=-2$

Continuous for all real numbers except $x=-2,2$
Not differentiable at $x=-2,2$
x-intercept: 0
y-intercept: 0
vertical asymptote: $x=-2$ and $x=2$
horizontal asymptote: none
relative maxima at the point $(4,-4)$
relative minima at the points $(-4,4)$
inflection point: $(0,0)$
$f^{\prime}(x)>0$ on $(-4,-2),(-2,2)$, and $(2,4)$
$f^{\prime}(x)<0$ on $(-\infty,-4)$, and $(4, \infty)$
$f^{\prime \prime}(x)>0$ on $(-\infty,-2)$ and $(0,2)$
$f^{\prime \prime}(x)<0$ on $(-2,0)$, and $(2, \infty)$
9. Continuous and differentiable for all real numbers.
$f^{\prime}(-1)=0$ and $f^{\prime}(5)=0$
$f^{\prime}(x)>0$ on $(-1,5)$ and $(5, \infty)$
$f^{\prime}(x)<0$ on $(-\infty,-1)$
$f^{\prime \prime}(x)>0$ on $(-\infty, 2)$ and $(5, \infty)$
$f^{\prime \prime}(x)<0$ on $(2,5)$
10. Continuous for all real numbers except $x=1$ where it has a vertical asymptote.
Differentiable everywhere except at $x=1$ and $x=5$
Horizontal asymptote of $y=0$.
$f^{\prime}(5)=$ DNE and $f(5)=4$
$f^{\prime}(x)<0$ on $(5, \infty)$
$f^{\prime}(x)>0$ on $(-\infty, 1)$ and $(1,5)$
$f^{\prime \prime}(x)<0$ on $(1,5)$
$f^{\prime \prime}(x)>0$ on $(-\infty, 1)$ and $(5, \infty)$
11. Continuous for all real numbers.

Differentiable everywhere except at $x=0$
Horizontal asymptote of $y=5$.
$f^{\prime}(2)=0$ and $f(2)=1$
$f^{\prime}(x)<0$ on $(-\infty, 0)$
$f^{\prime}(x)>0$ on $(0,2)$ and $(2, \infty)$
$f^{\prime \prime}(x)<0$ on $(-\infty, 0)$ and $(0,2)$ and $(4, \infty)$
$f^{\prime \prime}(x)>0$ on $(2,4)$
12. Continuous for all real numbers.

Differentiable everywhere except at $x=2$
$\lim _{x \rightarrow \infty} f(x)=3$
$f^{\prime}(6)=0$ and $f(6)=6$
$f^{\prime \prime}(8)=0$
$f^{\prime}(x)<0$ on $(-\infty, 2)$ and $(6, \infty)$
$f^{\prime}(x)>0$ on $(2,6)$
$f^{\prime \prime}(x)<0$ on $(2,8)$
$f^{\prime \prime}(x)>0$ on $(-\infty, 2)$ and $(8, \infty)$

