Section 6.1: Area between Curves

Consider the continuous functions $f(x)$ and $g(x)$ with the property on the interval $[a, b]$ that both are above the x -axis and $f(x) \geq g(x)$. Write down the computation that will give the area bounded between these functions on this interval.

For the next graphs, set-up the integral(s) that will give the area that is bounded between $f(x)$ and $g(x)$ on the interval $[a, b]$.

Example: Find the area that is bounded by these curves.
$y=x+3$
$y=x^{2}-9$

Example: Find the area that is bounded by these curves.
$x=y^{2}$
$x=2 y^{2}-4$

Example: Find the area that is bounded(enclosed) by these curves from $x=-2$ to $x=1$.
$y=e^{-3 x}$
$y=e^{x}$

Example: Set up the integral(s), with respect to the variable y, that gives the area that is bounded(enclosed) by these curves.
$y=2 \sqrt{x}$
$y=\frac{-x}{3}$
$3 x+y=16$

Example: Set up the integral(s) that will give area that is bounded by these curves on the interval $-2 \leq y \leq 3$.
$x=y^{2}-4 y$
$y=0.5 x$

Example: Set up the integral(s) that will give area that is bounded by these curves from $x=0$ to $x=2 \pi$.
$y=\sin (x)$
$y=2-3 \sin (x)$

Example: Set up the integral(s) that will give area that is bounded by these curves $x=|y-1|$ and $x=y^{2}-3$ with the condition that $y \geq 0$

