Section 6.2: Volume

Let S be a sold that lies between the planes P_{a} and P_{b}. Assume that cross sections of the solid is given by A and are perpendicular to the x-axis.

1. The solid, S , has a base that is a circular disk with radius 2 . Find the volume of the the solid if parallel cross sections taken perpendicular to the base are squares.
2. The solid, S , has a base that is bounded by the equations: $y=x^{2}$ and $y=4$. Find the volume of the solid if parallel cross sections are equilateral triangles that are perpendicular to the y-axis

Now lets consider rotating a region bounded between the x -axis and the function $f(x)$ from $x=a$ to $x=b$ around the x -axis.

3. Find the volume of the solid obtained by rotating the region bounded by the following around the x-axis.

$$
y=x^{2}+1
$$

x-axis
$x=-1$
$x=2$
4. Find the volume of the solid obtained by rotating the region bounded by the given curves around the y-axis.

$$
\begin{aligned}
& x=4 y-y^{2} \\
& x=0
\end{aligned}
$$

5. Find the volume of the solid obtained by rotating the region bounded by the given curves around the y-axis.
$y=x^{2}+1$
$y=0$
$x=0$
$x=2$

Now lets consider rotating a region bounded between the function $f(x)$ and $g(x)$ from $x=a$ to $x=b$ around the x -axis.

6. Set up the integral(s) that would give the volume of the solid obtained by rotating the region bounded by the given curves around x-axis.

$$
\begin{aligned}
& y=x^{2}+2 \\
& 2 y-x=2 \\
& x=0 \\
& x=1
\end{aligned}
$$

7. Set up the integral(s) that would give the volume of the solid obtained by rotating the region bounded by the given curves around $y=3$

$$
\begin{aligned}
& y=x^{2}+2 \\
& 2 y-x=2 \\
& x=0 \\
& x=1
\end{aligned}
$$

8. Set up the integral(s) that would give the volume of the solid obtained by rotating the region bounded by the given curves around $x=-3$.

$$
\begin{aligned}
& y=x^{3} \\
& y=2 x+4 \\
& x=0
\end{aligned}
$$

