Section 6.3: Volume by Cylindrical Shells

Example: Find the volume of the solid obtained by rotating the region bounded by the given curves around the *y*-axis. $y = 2x - x^2$

x-axis

Example: Set up the integral(s) that would give the volume of the solid obtained by rotating the region bounded by the given curves around x-axis.

 $y = x^2$ $y^2 = 8x$

 $y = x^2 - 4x + 3$
x-axis

Example: Set up the integral(s) that would give the volume of the solid obtained by rotating the region bounded by the given curves around x-axis on the interval y = 0 to $y = \frac{\pi}{4}$ $x = \cos(y)$ x = -1 $y = x^{2} + 2$ 2y - x = 2 x = 0x = 1

Example: Set up the integral(s) that would give the volume of the solid obtained by rotating the region bounded by the given curves around x = -3. $y = x^3$ y = 2x + 4x = 0