Section 6.3: Volume by Cylindrical Shells

Example: Find the volume of the solid obtained by rotating the region bounded by the given curves around the y-axis.
$y=2 x-x^{2}$
x-axis

Example: Set up the integral(s) that would give the volume of the solid obtained by rotating the region bounded by the given curves around x-axis.
$y=x^{2}$
$y^{2}=8 x$

Example: Set up the integral(s) that would give the volume of the solid obtained by rotating the region bounded by the given curves around y-axis.
$y=x^{2}-4 x+3$
x-axis

Example: Set up the integral(s) that would give the volume of the solid obtained by rotating the region bounded by the given curves around x-axis on the interval $y=0$ to $y=\frac{\pi}{4}$
$x=\cos (y)$
$x=-1$

Example: Set up the integral(s) that would give the volume of the solid obtained by rotating the region bounded by the given curves around $x=2$.
$y=x^{2}+2$
$2 y-x=2$
$x=0$
$x=1$

Example: Set up the integral(s) that would give the volume of the solid obtained by rotating the region bounded by the given curves around $x=-3$.
$y=x^{3}$
$y=2 x+4$
$x=0$

