Section 10.3: Polar Coordinates

Definition: The polar coordinate system is a way to reference the points in the xy-plane where each point is of the form $(r, \theta) . r$ is the distance from the point in the plane to the pole (or origin). θ is the angle from the polar axis (positive x -axis) to the line segment connecting the point and the origin. This angle is positive when measured in the counterclockwise direction and negative when measured in the clockwise direction.

Example: Plot these points: $\mathrm{A}\left(1.5, \frac{7 \pi}{6}\right), \mathrm{B}\left(-2, \frac{3 \pi}{4}\right), \mathrm{C}\left(2, \frac{-\pi}{4}\right)$.

Example: Give a polar coordinate of the Cartesian point $(0,3)$.

Converting Between Polar and Cartesian Coordinates:

Example: Convert the point $\left(1.5, \frac{\pi}{6}\right)$ from polar to Cartesian coordinates.

Example: Convert the point $(1,-\sqrt{3})$ from Cartesian to polar coordinates.

Example: Sketch the region in the plane consisting of points whose polar coordinates satisfies these conditions: $1 \leq r \leq 2, \pi / 3 \leq \theta \leq 3 \pi / 4$

Example: Find a Cartesian equations for the polar equation and sketch the graph.
$r=10 \cos \theta$

Example: Find a Cartesian equations for the polar equation and sketch the graph.
$r=-4 \sin \theta$

Example: Find a Cartesian equations for the polar equation and sketch the graph. $r=1+\cos \theta$

Example: Sketch the graph of the limacon.
$r=3+5 \sin \theta$

Example: Sketch the graph of the rose.
$r=\cos 2 \theta$

Example: Sketch the graph of the rose.
$r=2 \sin 3 \theta$

Note: Here is a link that gives some of the conditions for the number of loops in the polar graph. https://en.wikipedia.org/wiki/Rose_(mathematics)

Example: Find a polar equation for the Cartesian equations.
$y^{2}=5 x$

