Section 10.4: Areas and Length in Polar Coordinates

We would like to find the area of the region that is between the pole (origin) and the polar equation $r=f(\theta)$ from $\theta=a$ to $\theta=b$.

To be able to find this area we start back with the area of a circle being $A=\pi r^{2}$.

A sector of a circle, which is a part of the circle formed by the central angle θ, has an area that is proportional to the whole circle.
$A=\left(\frac{\theta}{2 \pi}\right) \pi r^{2}=\frac{1}{2} r^{2} \theta$

Now partition the region(on the right) where $\theta_{1}=a$ to $\theta_{n}=b$. The area of each of the smaller sectors is given by $A_{i}=\frac{1}{2} r_{i}^{2} \Delta \theta$. Then area of the region is approximated by $A \approx \sum \frac{1}{2} r_{i}^{2} \Delta \theta$.

Thus the area of the region is $A=\int_{a}^{b} \frac{1}{2} r^{2} d \theta, \quad$ where $r=f(\theta)$.

Example: Find the area of one petal of the graph $r=5 \cos (3 \theta)$.

Example: Find the area inside $r=3+2 \sin \theta$ and outside the circle $r=2$.

Example: Find the area inside the circle $r=2$ and outside $r=3+2 \sin \theta$

Example: Setup the integral(s) that give the area above the x -axis and inside $r=2+2 \cos \theta$ and outside $r=4 \cos \theta$

Arc Length

From section 10.2 we know the length of a curve is $L=\int_{a}^{b} d s$ where $d s=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$.
Find the arc length of the polar curve $r=$ for $a \leq \theta \leq b$. Once again we assume that the curve is traced exactly once.

We start with $x=r \cos \theta$ and $y=r \sin \theta$ or $x=f(\theta) \cos \theta$ and $y=f(\theta) \sin \theta$
We know the formula for $d s$.
$d s=\sqrt{\left(\frac{d x}{d \theta}\right)^{2}+\left(\frac{d y}{d \theta}\right)^{2}} d \theta=\cdots$ lots of algebra $\cdots=\sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta$

Example: Find the length of the curve $r=\theta$ for $0 \leq \theta \leq 1$.

Example: Find the length of the curve $r=-4 \sin \theta$ for $0 \leq \theta \leq \frac{2 \pi}{3}$

Example: Setup the integral that would give the length of the curve that forms one of the loops for $r=\sin (2 \theta)$.

