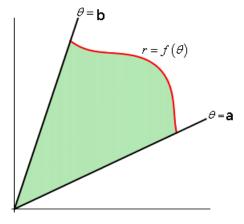
Section 10.4: Areas and Length in Polar Coordinates

We would like to find the area of the region that is between the pole (origin) and the polar equation $r = f(\theta)$ from $\theta = a$ to $\theta = b$.

To be able to find this area we start back with the area of a circle being $A = \pi r^2$.

A sector of a circle, which is a part of the circle formed by the central angle θ , has an area that is proportional to the whole circle.

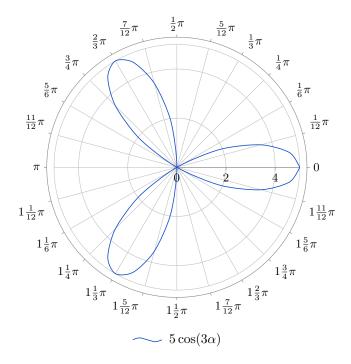
$$A = \left(\frac{\theta}{2\pi}\right)\pi r^2 = \frac{1}{2}r^2\theta$$



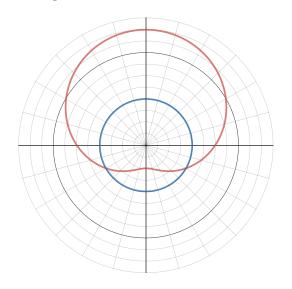
Now partition the region (on the right) where $\theta_1 = a$ to $\theta_n = b$. The area of each of the smaller sectors is given by $A_i = \frac{1}{2}r_i^2\Delta\theta$. Then area of the region is approximated by $A \approx \sum \frac{1}{2}r_i^2\Delta\theta$.

Thus the area of the region is $A = \int_{a}^{b} \frac{1}{2}r^{2}d\theta$, where $r = f(\theta)$.

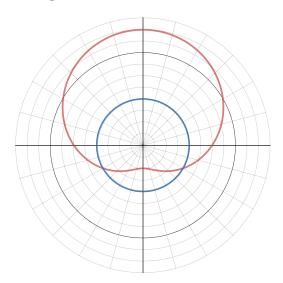
Example: Find the area of one petal of the graph $r = 5\cos(3\theta)$.



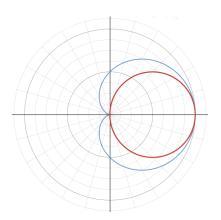
Example: Find the area inside $r = 3 + 2\sin\theta$ and outside the circle r = 2.



Example: Find the area inside the circle r = 2 and outside $r = 3 + 2\sin\theta$



Example: Setup the integral(s) that give the area above the x-axis and inside $r = 2 + 2\cos\theta$ and outside $r = 4\cos\theta$



Arc Length

From section 10.2 we know the length of a curve is $L = \int_{a}^{b} ds$ where $ds = \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$.

Find the arc length of the polar curve r =for $a \le \theta \le b$. Once again we assume that the curve is traced exactly once.

We start with $x = r \cos \theta$ and $y = r \sin \theta$ or $x = f(\theta) \cos \theta$ and $y = f(\theta) \sin \theta$ We know the formula for ds.

$$ds = \sqrt{\left(\frac{dx}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2} \quad d\theta = \dots \text{ lots of algebra} \dots = \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} \quad d\theta$$

Page 4

Example: Find the length of the curve $r=-4\sin\theta$ for $0\leq\theta\leq\frac{2\pi}{3}$

Example: Setup the integral that would give the length of the curve that forms one of the loops for $r = \sin(2\theta)$.

