## Section 11.1: Sequences

**Definition:** A sequence is a list of numbers written in a definite order.  $a_1, a_2, a_3, \dots$  or  $\{a_n\}_{n=1}^{\infty}$ 

Example: Find a general formula for these sequences.

A)  $\left\{\frac{5}{9}, \frac{6}{16}, \frac{7}{25}, \frac{8}{36}, \ldots\right\}$ 

B) 
$$\left\{\frac{3}{4}, \frac{6}{11}, \frac{9}{18}, \frac{12}{25}, \frac{15}{32}, \ldots\right\}$$

C)  $\{1, 1, 2, 3, 5, 8, 13, 21, ...\}$ 

**Definition:** A sequence  $\{a_n\}$  is said to have the limit L, written  $\lim_{n\to\infty} a_n = L$  or  $a_n \to L$  as  $n \to \infty$ , if we can make the terms  $a_n$  as close to L as we like by taking n sufficiently large. If  $\lim_{n\to\infty} a_n$  exists, we say that the sequence converges (or is convergent). Otherwise, we say the sequence diverges (or is divergent).

**Definition:** If  $\{a_n\}$  is a sequence, then  $\lim_{n \to \infty} a_n = L$  means that for every  $\epsilon > 0$  there is a corresponding integer N such that  $|a_n - L| < \epsilon$  whenever n > N.



Example: Do these sequences converge or diverge.

A)  $\{(-1)^n\}_{n=1}^{\infty}$ 

B)  $\{\cos(2n\pi)\}$ 

C) 
$$\left\{\frac{3n}{n+2}\right\}_{n=5}^{\infty}$$

**THEOREM** If  $\lim_{x \to \infty} f(x) = L$  and  $f(n) = a_n$  when n is an integer, then  $\lim_{n \to \infty} a_n = L$ .

Example: Does the sequences converge or diverge? If it converges, give the value.

A) 
$$\left\{ \frac{n^2}{\ln(3+e^n)} \right\}$$

$$\mathbf{B}) \left\{ \frac{3n}{n+2} + \frac{n^2}{n^2+1} \right\}$$

Limit Laws for Convergent Sequences: If  $\{a_n\}$  and  $\{b_n\}$  are convergent sequences and c is a constant, then

$$\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n$$

$$\lim_{n \to \infty} (a_n - b_n) = \lim_{n \to \infty} a_n - \lim_{n \to \infty} b_n$$

$$\lim_{n \to \infty} ca_n = c \lim_{n \to \infty} a_n$$

$$\lim_{n \to \infty} ca_n = c \lim_{n \to \infty} a_n$$

Squeeze Theorem for Sequences: If  $a_n \leq b_n \leq c_n$  for  $n \geq n_o$  and  $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$ , then  $\lim_{n \to \infty} b_n = L$ 

Example: Does the sequence  $a_n$  converge or diverge? If it converges, give the value.

A) 
$$a_n = \frac{(-1)^n n^2}{n^2 + 1}$$

B) 
$$a_n = \frac{(-1)^n 3n}{n^2 + 5}$$

C) 
$$a_n = \frac{n!}{n^n}$$

Example: Find the values of r so that  $\{r^n\}$  converges. Determine what the series will converge to.

**Definition** A sequence  $\{a_n\}$  is called **increasing** if  $a_n < a_{n+1}$  for all  $n \ge 1$ , that is  $a_1 < a_2 < a_3 < \dots$ It is called **decreasing** if  $a_n > a_{n+1}$  for all  $n \ge 1$ . A sequence is **monotonoic** if it is either increasing or decreasing.

Example: Show that the sequence  $a_n = \frac{n}{n^2 + 4}$  is a decreasing sequence.

**Definition** A sequence  $\{a_n\}$  is **bounded above** if there is a number M such that  $a_n \leq M$  for all  $n \geq 1$ . It is **bounded below** if there is a number m such that  $m \leq a_n$  for all  $n \geq 1$ . If it is bounded above and below, then  $\{a_n\}$  is a bounded sequence.

Monotonic Sequence Theorem: Every bounded, monotonic sequence is convergent.

Question: If a sequence is convergent, is the sequence bounded?

Page 7

Example: You are given that the sequence given by  $a_1 = \sqrt{5}$ ,  $a_{n+1} = \sqrt{5 + a_n}$  is increasing and bounded above by 4.

Find  $\lim_{n \to \infty} a_n$ 

Example: You are told that the sequence given by  $a_1 = 1$ ,  $a_{n+1} = 3a_n - 1$  is increasing. Does this sequence converge?

Example: Assume that this sequence will converge. Give the exact value that it will converge to.

$$a_1 = -1$$
  $a_{n+1} = \frac{1}{5} \left( a_n + \frac{44}{a_n} \right)$