Section 11.1: Sequences

Definition: A sequence is a list of numbers written in a definite order.
$a_{1}, a_{2}, a_{3}, \ldots$ or $\left\{a_{n}\right\}_{n=1}^{\infty}$
Example: Find a general formula for these sequences.
A) $\left\{\frac{5}{9}, \frac{6}{16}, \frac{7}{25}, \frac{8}{36}, \ldots\right\}$
B) $\left\{\frac{3}{4}, \frac{6}{11}, \frac{9}{18}, \frac{12}{25}, \frac{15}{32}, \ldots\right\}$
C) $\{1,1,2,3,5,8,13,21, \ldots\}$

Definition: A sequence $\left\{a_{n}\right\}$ is said to have the limit L , written $\lim _{n \rightarrow \infty} a_{n}=L$ or $a_{n} \rightarrow L$ as $n \rightarrow \infty$, if we can make the terms a_{n} as close to L as we like by taking n sufficiently large. If $\lim _{n \rightarrow \infty} a_{n}$ exists, we say that the sequence converges (or is convergent). Otherwise, we say the sequence diverges (or is divergent).

Definition: If $\left\{a_{n}\right\}$ is a sequence, then $\lim _{n \rightarrow \infty} a_{n}=L$ means that for every $\epsilon>0$ there is a corresponding integer N such that $\left|a_{n}-L\right|<\epsilon \quad$ whenever $\quad n>N$.

Example: Do these sequences converge or diverge.
A) $\left\{(-1)^{n}\right\}_{n=1}^{\infty}$
B) $\{\cos (2 n \pi)\}$
C) $\left\{\frac{3 n}{n+2}\right\}_{n=5}^{\infty}$

THEOREM If $\lim _{x \rightarrow \infty} f(x)=L$ and $f(n)=a_{n}$ when n is an integer, then $\lim _{n \rightarrow \infty} a_{n}=L$.

Example: Does the sequences converge or diverge? If it converges, give the value.
A) $\left\{\frac{n^{2}}{\ln \left(3+e^{n}\right)}\right\}$
B) $\left\{\frac{3 n}{n+2}+\frac{n^{2}}{n^{2}+1}\right\}$

Limit Laws for Convergent Sequences: If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are convergent sequences and c is a constant, then

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\lim _{n \rightarrow \infty} a_{n}+\lim _{n \rightarrow \infty} b_{n} \\
& \lim _{n \rightarrow \infty}\left(a_{n}-b_{n}\right)=\lim _{n \rightarrow \infty} a_{n}-\lim _{n \rightarrow \infty} b_{n} \\
& \lim _{n \rightarrow \infty} c a_{n}=c \lim _{n \rightarrow \infty} a_{n}
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} a_{n} b_{n}=\lim _{n \rightarrow \infty} a_{n} * \lim _{n \rightarrow \infty} b_{n} \\
& \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{\lim _{n \rightarrow \infty} a_{n}}{\lim _{n \rightarrow \infty} b_{n}}, \text { if } \lim _{n \rightarrow \infty} b_{n} \neq 0
\end{aligned}
$$

Squeeze Theorem for Sequences: If $a_{n} \leq b_{n} \leq c_{n}$ for $n \geq n_{o}$ and $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}=L$, then $\lim _{n \rightarrow \infty} b_{n}=L$

Example: Does the sequence a_{n} converge or diverge? If it converges, give the value.
A) $a_{n}=\frac{(-1)^{n} n^{2}}{n^{2}+1}$
B) $a_{n}=\frac{(-1)^{n} 3 n}{n^{2}+5}$
C) $a_{n}=\frac{n!}{n^{n}}$

Example: Find the values of r so that $\left\{r^{n}\right\}$ converges. Determine what the series will converge to.

Definition A sequence $\left\{a_{n}\right\}$ is called increasing if $a_{n}<a_{n+1}$ for all $n \geq 1$, that is $a_{1}<a_{2}<a_{3}<\ldots$. It is called decreasing if $a_{n}>a_{n+1}$ for all $n \geq 1$. A sequence is monotonoic if it is either increasing or decreasing.

Example: Show that the sequence $a_{n}=\frac{n}{n^{2}+4}$ is a decreasing sequence.

Definition A sequence $\left\{a_{n}\right\}$ is bounded above if there is a number M such that $a_{n} \leq M$ for all $n \geq 1$. It is bounded below if there is a number m such that $m \leq a_{n}$ for all $n \geq 1$. If it is bounded above and below, then $\left\{a_{n}\right\}$ is a bounded sequence.

Monotonic Sequence Theorem: Every bounded, monotonic sequence is convergent.

Question: If a sequence is convergent, is the sequence bounded?

Example: You are given that the sequence given by $a_{1}=\sqrt{5}, a_{n+1}=\sqrt{5+a_{n}}$ is increasing and bounded above by 4 .

Find $\lim _{n \rightarrow \infty} a_{n}$

Example: You are told that the sequence given by $a_{1}=1, a_{n+1}=3 a_{n}-1$ is increasing. Does this sequence converge?

Example: Assume that this sequence will converge. Give the exact value that it will converge to.

$$
a_{1}=-1 \quad a_{n+1}=\frac{1}{5}\left(a_{n}+\frac{44}{a_{n}}\right)
$$

