Taylor Polynomials.

The Taylor series of a function, f(x), can be expressed: $f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k$.

The **n-th degree Taylor polynomial** of f(x) at a, denoted T_n is given by

$$T_n(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$

The following graph shows the function $f(x) = \frac{10}{x^2 + 25}$ and T_0, T_2, T_4 , and T_6 .

Example: Find the Taylor polynomials, T_1 , T_2 , and T_3 , for $f(x) = xe^x$ centered at a = 2.

Page 2

Example: Find the Taylor polynomials, T_1 , T_4 , T_5 , and T_7 for $f(x) = \frac{x}{1+5x^3}$ centered at a = 0

Example: Express $f(x) = 2x^3 + 4x^2 + 7x + 6$ as a Taylor polynomial (series) about a = 2.