Section 11.11: Application of Taylor Polynomials

Taylor Polynomials.

The Taylor series of a function, $f(x)$, can be expressed: $f(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}$.
The \mathbf{n}-th degree Taylor polynomial of $f(x)$ at a, denoted T_{n} is given by
$T_{n}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}$

The following graph shows the function $f(x)=\frac{10}{x^{2}+25}$ and T_{0}, T_{2}, T_{4}, and T_{6}.

Example: Find the Taylor polynomials, T_{1}, T_{2}, and T_{3}, for $f(x)=x e^{x}$ centered at $a=2$.

Example: Find the Taylor polynomials, T_{1}, T_{4}, T_{5}, and T_{7} for $f(x)=\frac{x}{1+5 x^{3}}$ centered at $a=0$

Example: Express $f(x)=2 x^{3}+4 x^{2}+7 x+6$ as a Taylor polynomial(series) about $a=2$.

