Section 11.3: The Integral Test and Estimates of Sums

Note: In this section all series have positive terms.

This graph was used to discuss the Harmonic series in section 11.2. We saw that
$\sum_{n=1}^{\infty} \frac{1}{n}>\int_{1}^{\infty} \frac{1}{x} d x>0$
and concluded that the Harmonic series diverged.

Here are the graphs for the function $f(x)=\frac{1}{x^{2}}$. Does the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converge or diverge?

The Integral Test Suppose f is continuous, positive, decreasing function on $[1, \infty)$, or on $[A, \infty)$, and let $a_{n}=f(n)$. Then the series $\sum_{n=1}^{\infty} a_{n}$ is convergent if and only if the improper integral $\int_{1}^{\infty} f(x) d x$ is convergent. In other words:
(a) If $\int_{1}^{\infty} f(x) d x$ is convergent then $\sum_{n=1}^{\infty} a_{n}$ is convergent.
(b) If $\int_{1}^{\infty} f(x) d x$ is divergent then $\sum_{n=1}^{\infty} a_{n}$ is divergent.

Example: Assume that $\sum_{n=1}^{\infty} a_{n}$ is a series where $f(n)=a_{n}$ and $\int_{1}^{\infty} f(x) d x$ converges to the number L.
Does this mean that the series $\sum_{n=1}^{\infty} a_{n}$ converge to L?

Example: Do these series converge or diverge?
A) $\sum_{n=1}^{\infty} \frac{n^{2}}{1+n^{2}}$
B) $\sum_{n=1}^{\infty} \frac{1}{1+n^{2}}$
C) $\sum_{n=1}^{\infty} \frac{(\ln (n))^{2}}{n}$

Remainder Estimate For The Integral Test Suppose that $\sum a_{n}$ converges by the Integral Test to the number s. If s_{n} is a partial sum that approximates this series, define R_{n} to be the remainder, i.e. $s_{n}+R_{n}=s$, then we get the following bounds on the remainder and the sum:

$$
\begin{aligned}
& \sum_{i=1}^{\infty} a_{i}=a_{1}+a_{2}+a_{3}+\ldots+a_{n-1}+a_{n}+a_{n+1}+a_{n+2}+\ldots=s \\
& \int_{n+1}^{\infty} f(x) d x \leq R_{n} \leq \int_{n}^{\infty} f(x) d x \quad s_{n}+\int_{n+1}^{\infty} f(x) d x \leq s \leq s_{n}+\int_{n}^{\infty} f(x) d x
\end{aligned}
$$

Example: Given that this series converges by the Integral test. $\sum_{i=1}^{\infty} \frac{30}{i^{4}}$.
A) Find the bounds on R_{10}
B) What bounds are on the sum for this series?
C) If you wanted the error to be less than 0.005 , what is the smallest value of n should you use?

Example: The following series converges by integral test. Determine the smallest number of terms that should be used if the maximum error of the partial sum should be less than 0.05 ?
$\sum_{i=1}^{\infty} \frac{1}{i^{3}}$.

