## Section 11.4: The Comparison Tests

Note: In this section all series have positive terms.

The Comparison Test (Strict Comparison): Suppose that $\sum a_{n}$ and $\sum b_{n}$ are series with positive terms.
(a) If $\sum b_{n}$ is convergent and $a_{n} \leq b_{n}$ for all $n$, then $\sum a_{n}$ is also convergent.
(b) If $\sum b_{n}$ is divergent and $a_{n} \geq b_{n}$ for all $n$, then $\sum a_{n}$ is also divergent.

Example: Do these series converge or diverge?
A) $\sum_{n=1}^{\infty} \frac{6}{5 n^{3}+n^{2}+1}$
B) $\sum_{n=1}^{\infty} \frac{3^{2 n+1}}{7^{n}+5}$
C) $\sum_{n=1}^{\infty} \frac{1}{5^{n}-2}$

Limit Comparison $\operatorname{Test}(\mathbf{L C T})$ : Suppose that $\sum a_{n}$ and $\sum b_{n}$ are series with positive terms and $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L \geq 0$

If $L>0$ then both series converge or both series diverge.
If $L=0$ and $\sum b_{n}$ converge, then $\sum a_{n}$ converge.
If $L=\infty$ and $\sum b_{n}$ diverge, then $\sum a_{n}$ diverge.
(Note: This test is slightly different that the test given in the book.)

Example: Do these series converge or diverge?
A) $\sum_{n=1}^{\infty} \frac{1}{5^{n}-2}$
B) $\sum_{n=1}^{\infty} \frac{5}{\sqrt{n^{2}+2 n}-7}$
C) $\sum_{n=1}^{\infty} \frac{\ln n}{n^{3}}$
D) $\sum_{n=1}^{\infty} \frac{3 n^{2}+5 n}{2^{n}\left(n^{2}+1\right)}$
E) $\sum_{n=2}^{\infty} \frac{5+\cos (n)}{\sqrt{n-1}}$

