## Section 11.5: Alternating Series

An alternating series is a series whose terms are alternately positive and negative. The general term, $a_{n}$, is of the form $a_{n}=(-1)^{n} b_{n}$ or $a_{n}=(-1)^{n+1} b_{n}$ or $a_{n}=(-1)^{n-1} b_{n}$, where $b_{n}$ is a positive number.

The Alternating Series Test (AST): If the alternating series
$\sum_{n=1}^{\infty}(-1)^{(n-1)} b_{n}=b_{1}-b_{2}+b_{3}-b_{4}+b_{5}-b_{6}+\ldots$.
with $b_{n}>0$ satisfies:
(1) $b_{n+1} \leq b_{n}$ for all $n$ and
(2) $\lim _{n \rightarrow \infty} b_{n}=0$
then the series is convergent.


Note: The Alternating Series Test does not tell us if a series will diverge.

Example: Does this series converge or diverge? $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$

Alternating Series Estimation Theorem: If $s=\sum_{n=1}^{\infty}(-1)^{(n-1)} b_{n}$ is the sum of an alternating series that satisfies:
(a) $0<b_{n+1} \leq b_{n} \quad$ and
(b) $\lim _{n \rightarrow \infty} b_{n}=0$
then $\left|R_{n}\right|=\left|s-s_{n}\right| \leq b_{n+1}$

Example: Find a bound on $R_{4}$ for the series: $\sum_{n=3}^{\infty} \frac{(-1)^{n}}{n}$

Example: Do these series converge or diverge?
A) $\sum_{n=1}^{\infty}(-1)^{n} \ln \left(1+\frac{1}{n^{2}}\right)$
B) $\sum_{n=1}^{\infty} \frac{(-3)^{n+1}}{n^{2}}$
C) $\sum_{n=1}^{\infty} \frac{n \cos (n \pi)}{4^{n}}$
D) $\sum_{n=1}^{\infty} \frac{\sin (n)}{n^{2}+1}$

Example: Determine if the series converges or diverges. If it converges find a bound for the error of $s_{6}$, i.e. $R_{6}$
$\sum_{n=1}^{\infty}(-1)^{n}(\sqrt{n+1}-\sqrt{n})$

Example: What is the smallest number of terms we must use to approximate $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}$ so that the error is less than $\frac{1}{120}$.

Example: What is the minimum number of terms needed so that the sum of this series is correct to 3 decimal places? i.e. error $<0.0005$
$\sum_{n=1}^{\infty} \frac{(-1)^{n}}{(2 n-1)!}$

Example: Given that the alternating series $\sum_{n=1}^{\infty}(-1)^{(n-1)} b_{n}$ converges. Is the sum of the first 47 terms, $s_{47}$, an overestimate or an underestimate for the total sum?

