Math 152: Cool thing with a power series

I want to compute the value of $\sum_{n=1}^{\infty} \frac{n^{2}}{6^{n}}$
If we have $x=\frac{1}{6}$ then we are basically evaluating the power series $\sum_{n=1}^{\infty} n^{2} x^{n}$.
Now lets consider the building blocks that we have. note: the radius of convergence is 1 for all of these.
$\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$
$\frac{1}{(1-x)^{2}}=\frac{d}{d x} \frac{1}{1-x}=\sum_{n=1}^{\infty} n x^{n-1}$
note the change in the index of the series. it now starts at 1 .
$\frac{2}{(1-x)^{3}}=\frac{d}{d x} \frac{1}{(1-x)^{2}}=\sum_{n=2}^{\infty} n(n-1) x^{n-2}$
Now we need to make some adjustments to the building blocks to get x^{n} in each of the series.
$\frac{x}{(1-x)^{2}}=x * \frac{1}{(1-x)^{2}}=\sum_{n=1}^{\infty} n x^{n}$
$\frac{2 x^{2}}{(1-x)^{3}}=x^{2} * \frac{2}{(1-x)^{3}}=\sum_{n=2}^{\infty} n(n-1) x^{n}=\sum_{n=2}^{\infty}\left(n^{2}-n\right) x^{n}$
Now the series for $2 x^{2}(1-x)^{3}$ starts at $n=2$. We would like it to start at $n=1$. Looking carefully at the series, $\sum_{n=2}^{\infty} n(n-1) x^{n}$, notice that if $n=1$ then the first term would be zero. Thus starting theindex at $n=1$ or $n=2$ gives the same series.
i.e. $\frac{2 x^{2}}{(1-x)^{3}}=\sum_{n=2}^{\infty}\left(n^{2}-n\right) x^{n}=\sum_{n=1}^{\infty}\left(n^{2}-n\right) x^{n}$

Now for the "fun". add the fractions
$\frac{2 x^{2}}{(1-x)^{3}}+\frac{x}{(1-x)^{2}}=\sum_{n=1}^{\infty}\left(n^{2}-n\right) x^{n}+\sum_{n=1}^{\infty} n x^{n}=\sum_{n=1}^{\infty}\left(n^{2}-n\right) x^{n}+n x^{n}=\sum_{n=1}^{\infty} n^{2} x^{n}-n x^{n}+n x^{n}$
thus
$\frac{2 x^{2}}{(1-x)^{3}}+\frac{x}{(1-x)^{2}}=\sum_{n=1}^{\infty} n^{2} x^{n}$
now just plug in $x=\frac{1}{6}$ into the above formula and compute to get the answer.
$\sum_{n=1}^{\infty} \frac{n^{2}}{6^{n}}=\frac{2(1 / 6)^{2}}{(1-1 / 6)^{3}}+\frac{1 / 6}{(1-1 / 6)^{2}}=0.336$
see this was "cool".

