Section 10.2: Additional Problems

1. Find the length of the arc of the curve $x=t^{2}, y=t^{3}$ on the interval $0 \leq t \leq 2$.
2. Find the surface area about the y-axis for $x=t^{2}, y=t^{3}$ on the interval $0 \leq t \leq 2$.
3. Find the length of the arc of the curve $x=t, y=\ln (\cos (t))$, on the interval $0 \leq t \leq \frac{\pi}{4}$.
4. Find the arc length of the curve $x=\ln \left(1-t^{2}\right), y=t$ on the interval $0 \leq t \leq 0.5$.
5. Find the area of the surface obtained by rotating the curve defined by $x(t)=3 t-t^{3}, y(t)=3 t^{2}$ on the interval $0 \leq t \leq 1$ about the y -axis.
6. Set up the integral that would find the area of the surface obtained by rotating the curve $x=1+2 y^{2}$ on the interval $1 \leq y \leq 2$ about $\mathrm{x}=1$.
7. Set up the integral that would find the area of the surface obtained by rotating the curve $x=1+2 y^{2}$ on the interval $1 \leq y \leq 2$ about $y=-2$.
