Section 11.2: Additional Problems

1) Determine if this series is convergent or divergent. If the series is convergent, then give the sum of the series.
$\sum_{i=1}^{\infty} \frac{1}{i(i+3)}$
2) Use a geometric series to express $3.1 \overline{53}$ as a ratio of integers.
3) Determine if the series is convergent or divergent. If convergent, then give the sum of the series.
A) $\sum_{n=1}^{\infty}(-5)^{n+2} 4^{-n}$
B) $\sum_{i=3}^{\infty} 60\left(\frac{1}{2}\right)^{i}$
C) $\sum_{n=2}^{\infty} 10 * \frac{2^{3 n-1}}{5^{n+4}}$
D) $\sum_{i=1}^{\infty}\left(e^{i^{-1}}-e^{(i+2)^{-1}}\right)$
4) Assume that the n-th partial sum of the series $\sum_{n=1}^{\infty} a_{n}$ is given by $s_{n}=\frac{2 n+1}{5 n+2}$.
A) Does the series converge or diverge? If the series is convergent, then give the sum of the series.
B) Find the formula for a_{n}.
