## Exam 1 Information

You are encouraged to check this document to make sure that I did not accidently have typos in any of the formulas.

## Chapter 1

- $a(t)$ : accumulation function. measures the amount in a fund with an investment of 1 at time 0 at the end of $t$ years.
$a(t)=1+i t$ simple interest
$a(t)=(1+i)^{t}$ compound interest
$a(t)=\prod_{j=1}^{t}\left(1+i_{j}\right)$ varying interest rates where $i_{j}$ is the rate per period.
- $A(t)=k a(t)$ : amount function where $k$ is usually the initial amount invested and will give the value of the fund at time $t$.
- $I_{n}=A(n)-A(n-1)$ interest earned during the n-th period
- Interest rates
$i$ - effective rate of interest
$i_{n}=\frac{A(n)-A(n-1)}{A(n-1)}$ the effective rate of interest of the $n$-th period
$i^{(m)}$ nominal rate of interest compounded $m$ thly
$\frac{i^{(m)}}{m}$ effective rate of interest per period (m periods in a year)
- discount rates
$d$ - effective rate of discount
$d_{n}=\frac{A(n)-A(n-1)}{A(n)}$ the effective rate of discount of the n -th period
$d^{(m)}$ is nominal rate of discount coumpounded $m$-thly
$\frac{d^{(m)}}{m}$ effective rate of discount per period (m periods in a year)
- present value (discounting)

$$
\mathrm{PV}=\frac{1}{a(t)}
$$

simple interest $(1+i t)^{-1}$
compound interest $(1+i)^{-t}=v^{t}$
simple discount: $a(t)=1-d t$
compound discount: $a(t)=(1-d)^{t}=v^{t}$

- force of interest

$$
\begin{aligned}
& \delta_{t}=\frac{A^{\prime}(t)}{A(t)}=\frac{a^{\prime}(t)}{a(t)} \\
& \delta_{t}=\frac{d}{d t} \ln (A(t))=\frac{d}{d t} \ln (a(t)) \\
& a(t)=e^{\int_{0}^{t}} \delta_{r} d r \\
& A(t)=A(0) e^{\int_{0}^{t}} \delta_{r} d r \\
& A(t 2)=A(t 1) e^{\int_{t 1}^{t 2}} \delta_{r} d r
\end{aligned}
$$

- if force of interest constant

$$
a(t)=e^{\delta t}
$$

$$
\text { present value }=e^{-\delta t}
$$

$\delta=\ln (1+i)$
$1+i=e^{\delta}$

- useful formulas/relationships

$$
\begin{aligned}
& v=\frac{1}{1+i} \\
& 1-d=v \\
& d=\frac{i}{1+i}=i v \\
& i=\frac{d}{1-d} \\
& 1+i=\left(1+\frac{i^{(m)}}{m}\right)^{m} \\
& 1-d=\left(1-\frac{d^{(m)}}{m}\right)^{m} \\
& 1+i=(1-d)^{-1}
\end{aligned}
$$

## Chapter 2

- Equations of value
- method of equated time
- solving problems for unknown time
- solving problems for unknown interest rates
- determing time periods
usually used with simple interest or compounded daily
exact: actual/actual
ordinary: $30 / 360$
banker's rule: actual/360
Any additional topic/infomation covered in these chapters.

