Exam 2 Information

You are encouraged to check this document to make sure that I did not accidentally have typos in any of the formulas.

Chapter 3

- Annuity immediate
payment made at end of period
$\mathrm{n}=$ number of payments
$\mathrm{i}=$ rate per period
$\mathrm{PV}=a_{\bar{n} \mid}=\frac{1-v^{n}}{i}$
$\mathrm{FV} s_{\bar{n}}=\frac{(1+i)^{n}-1}{i}$
$a_{\bar{n} \mid}=s_{\bar{n}} v^{n}$
$s_{\bar{n} \mid}=a_{\bar{n}}(1+i)^{n}$
- Annuity due
payment made at beging of period
$\mathrm{n}=$ number of payments
$\mathrm{i}=$ rate per period
$\mathrm{PV}=\ddot{a}_{\bar{n} \mid}=\frac{1-v^{n}}{d}$
$\mathrm{FV}=\ddot{s}_{\bar{n} \mid}=\frac{(1+i)^{n}-1}{d}$
$\ddot{a}_{\bar{n} \mid}=\ddot{s}_{\bar{n} \mid} v^{n}$
$\ddot{s}_{\bar{n} \mid}=\ddot{a}_{\bar{n} \mid}(1+i)^{n}$
- perpetuity
$a_{\infty \mid}=\frac{1}{i}$
$\ddot{a}_{\infty I}=\frac{1}{d}$
- relationships

$$
\begin{aligned}
& \ddot{a}_{\bar{n}}=(1+\mathrm{i}) a_{\bar{n} \mid}=1+a \overline{n-1} \\
& \ddot{s}_{\bar{n} \mid}=(1+\mathrm{i}) s_{\bar{n} \mid}=s_{\overline{n+1}}-1
\end{aligned}
$$

- Annuity value one any date
- deferred annuity
- unknown time
- ballon payment
- drop paymnet
- annuity with unknown rate of interest
- Annuit with varying interest
- portfolio method
- yield curve method

Chapter 4

- Annuities with differing payment and interest conversion periods.

Method 1: convert interest conversion period to coincide to the payment period. Solve using chapter 3 methods.
Method 2: Algebraic analysis.

- Annuity-immediate payable less frequently than interest conversions.
A payment period had more than one interest conversion periods.
i is the rate per interest conversion period
k is the number of interest conversions periods in one payment period
n is the total number of interest conversion periods pays 1 at the end of each k interest periods
$P V=\frac{a_{\bar{n} i}}{s_{\bar{k} \mid i}}$
$F V=P V(1+i)^{n}=\frac{s_{\bar{n} i}}{s_{\bar{k} i}}$
present value of perpetuity $=\frac{1}{i s_{\bar{k} i}}$

- Annuity-due payable less frequently than in-

 terest conversions.A payment period had more than one interest conversion periods.
i is the rate per interest conversion period k is the number of interest conversions periods in one payment period
n is the total number of interest conversion periods pays 1 at the beginning of each k interest periods $P V=\frac{a_{\bar{n} i i}}{a_{\bar{k} i}}=\frac{\ddot{a}_{\bar{n} i}}{\ddot{a}_{\bar{k} \mid i}}$
$F V=P V(1+i)^{n}=\frac{s_{\bar{n} i}}{a_{\bar{k} i}}=\frac{\ddot{s}_{\bar{n} i}}{\ddot{a}_{\vec{k} i}}$
present value of perpetuity $=\frac{1}{d \ddot{a}_{k i}}=\frac{1}{i a_{\overline{k i} i}}$ alternate formula for present value:

$$
\frac{a_{\bar{n} \mid i}}{s_{\bar{k} \mid i}}(1+i)^{k}=\frac{a_{\bar{n} \mid i}}{s_{\bar{k} \mid i} v^{k}}=\frac{a_{\bar{n} \mid i}}{a_{\bar{k} \mid i}}
$$

alternate formula for future value:

$$
\frac{s_{\bar{n} i}}{s_{\overline{k \mid i}}}(1+i)^{k}=\frac{s_{\bar{n} \mid i}}{s_{\bar{k} \mid i} v^{k}}=\frac{s_{\bar{n} \mid i}}{a_{\bar{k} \mid i}}
$$

- Annuity-immediate payable more frequently than interest conversions.
Interest is done annually(annual effective) and have multiple payment peroids in a year.
m is the number of payments in one interest conversion period.
n is the total number of interest conversion periods
i is the rate per interest conversion period(assumed annually)
$i^{(m)}=m\left[(1+i)^{1 / m}-1\right]$
total amount paid is 1 in the interest conversion period where each payment period is paid $1 / \mathrm{m}$.
$P V=a_{\bar{n} i}^{(m)}=\frac{1-v^{n}}{i^{(m)}}$
$F V=s_{\overline{\eta \mid i}}^{(m)}=a_{\bar{\eta} \mid i}^{(m)}(1+i)^{n}=\frac{(1+i)^{n}-1}{i^{(m)}}$
present value of perpetuity $=a_{\varnothing \mid i}^{(m)}=\frac{1}{i^{(m)}}$
- Annuity-due payable more frequently than interest conversions.
Interest is done annually (annual effective) and have multiple payment peroids in a year.
m is the number of payments in one interest conversion period.
n is the total number of interest conversion periods i is the rate per interest conversion period (asumed anually)
$d^{(m)}=m\left[1-(1+i)^{-1 / m}\right]$
total amount paid is 1 in the interest conversion period where each payment period is paid $1 / \mathrm{m}$.
$P V=\ddot{a}_{\bar{n} i}^{(m)}=\frac{1-v^{n}}{d^{(m)}}$
$F V=\ddot{s}_{\bar{n} i}^{(m)}=\ddot{a}_{\bar{n} \mid i}^{(m)}(1+i)^{n}=\frac{(1+i)^{n}-1}{d^{(m)}}$
present value of perpetuity $=\ddot{a}_{\infty \text { (}}{ }^{m} i=\frac{1}{d^{(m)}}$

- Continuous Annuity

n is the number of interest conversion periods total amount paid during each interest conversion period $=1$

$$
\begin{aligned}
\bar{a}_{\bar{n} \mid} & =\int_{0}^{n} v^{t} d t=\frac{v^{n}-1}{\ln (v)}=\frac{1-v^{n}}{\ln (1+i)} \\
& =\frac{1-v^{n}}{\delta}=\frac{1-e^{-\delta n}}{\delta} \\
\bar{s}_{\bar{n} \mid} & =\int_{0}^{n}(1+i)^{t} d t=\frac{(1+i)^{n}-1}{\ln (1+i)} \\
& =\frac{(1+i)^{n}-1}{\delta}=\frac{e^{\delta n}-1}{\delta}
\end{aligned}
$$

present value of perpetuity $=\lim _{n \rightarrow \infty} \bar{a}_{\bar{n}}$

- Annuity-immediate with payments varying in arithmetic progression

n is the number of periods
i is the rate per interest conversion period first payment P and increase by Q. payment periods coincide with interest conversion periods.
$\mathrm{PV}=P a_{\bar{n} \mid}+Q \frac{a_{\bar{n} \mid}-n v^{n}}{i}$
$\mathrm{FV}=P V(1+i)^{n}=P s_{\bar{n} \mid}+Q \frac{s_{\bar{n} \mid}-n}{i}$
Perpetuity: $P>0$ and $Q>0$

$$
\mathrm{PV}=\frac{P}{i}+\frac{Q}{i^{2}}
$$

Increasing annuity: $\mathrm{P}=\mathrm{Q}=1$

$$
\begin{aligned}
& (I a)_{\bar{n} \mid}=\frac{a_{\bar{n} \mid} *(1+i)-n v^{n}}{i}=\frac{\ddot{a}_{\bar{n} \mid}-n v^{n}}{i} \\
& (I s)_{\bar{n} \mid}=\frac{s_{\bar{n} \mid} *(1+i)-n}{i}=\frac{\ddot{s}_{\bar{n} \mid}-n}{i}
\end{aligned}
$$

decreasing annuity: $P=n$ and $Q=-1$

$$
\begin{aligned}
& (D a)_{\bar{n} \mid}=\frac{n-a_{\bar{n}}}{i} \\
& (D s)_{\bar{n} \mid}=\frac{n(1+i)^{n}-s_{\bar{n}}}{i}
\end{aligned}
$$

- Annuity-due with payments varying in arithmetic progression
n is the number of periods
i is the rate per interest conversion period
first payment P and increase by Q.
payment periods coincide with interest conversion periods.
$\mathrm{PV}=P \ddot{a}_{\bar{n} \mid}+Q \frac{a_{\bar{n} \mid}-n v^{n}}{d}$
$\mathrm{FV}=P V(1+i)^{n}=P \ddot{x}_{\bar{n} \mid}+Q \frac{s_{\bar{n}}-n}{d}$
Perpetuity: $P>0$ and $Q>0$

$$
\mathrm{PV}=\frac{P}{d}+\frac{Q}{i d}
$$

Increasing annuity: $\mathrm{P}=\mathrm{Q}=1$

$$
\begin{aligned}
& (I \ddot{a})_{\bar{n} \mid}=\frac{\ddot{a}_{\bar{n}}-n v^{n}}{d} \\
& (I \ddot{s})_{\bar{n}}=(1+i)^{n}(I \ddot{a})_{\bar{m} \mid}=\frac{\ddot{s}_{\vec{n} \mid}-n}{d}
\end{aligned}
$$

$$
\begin{aligned}
& (D \ddot{a})_{\bar{n}}=\frac{n-a_{\bar{n}}}{d} \\
& (D \ddot{s})_{\bar{n} \mid}=(1+i)^{n}(D \ddot{a})_{\bar{n} \mid}=\frac{n(1+i)^{n}-s_{\bar{n}}}{d}
\end{aligned}
$$

- Annuity-immediate with payments varying in geometric progression

n is the number of periods
i is the rate per interest per interest conversion period
first payment is 1 and successive payments increase/decrease by $k \%$. growth ratio of $(1+k)$.
Method 1: working the problem as regular
$P V=\frac{1-\left(\frac{1+k}{1+i}\right)^{n}}{(1+i)-(1+k)}=\frac{1-\left(\frac{1+k}{1+i}\right)^{n}}{i-k}$
$F V=P V(1+i)^{n}=\frac{(1+i)^{n}-(1+k)^{n}}{i-k}$
Perpetuity: $k<i$

$$
P V=\frac{1}{i-k}
$$

Method 2: working the problem with an adjusted rate per period.
adjusted rate: $1+j=\frac{1+i}{1+k}$
$P V=\frac{1}{1+k} a_{\bar{n} j}$
$F V=P V(1+i)^{n}=\frac{(1+i)^{n}-(1+k)^{n}}{i-k}$
Perpetuity: $k<i$

$$
P V=\frac{1}{1+k} * \frac{1}{j}
$$

- Annuity-due with payments varying in geometric progression

n is the number of periods
i is the rate per interest per interest conversion period
first payment is 1 and successive payments increase/decrease by $k \%$. growth ratio of $(1+k)$.
$P V=(1+i) * \mathrm{PV}$ of annuity-immediate
With adjusted rate per period

$$
\begin{aligned}
& P V=\frac{1}{1+k} a_{\bar{n} j j}(1+i)=\frac{1+i}{1+k} a_{\bar{n} \mid j} \\
& =(1+j) a_{\bar{n} \mid j}=\ddot{a}_{\bar{n} \mid j}
\end{aligned}
$$

Any additional topic/information covered in these chapters.

