Chapter 3: Basic Annuities

Section 3.1: Introduction

An annuity may be defined as a series of payments made at equal intervals of time.
An annuity-certain is an annuity such that payments are certain to be made for a fixed period of time (the term of the annuity).

A contingent annuity is an annuity under which the payments are not certain. i.e. payments from a pension plan for the life of a retiree.

The interval between annuity payments is called the payment period. This chapter considers annuities where the payment period and the interest conversion period are equal and coincide.

Section 3.2: Annuity-Immediate

An annuity under which payments are made at the end of each payment period for n periods, where n is a positive integer, is called an annuity-immediate or an ordinary annuity or just an annuity.

Consider the annuity where payments of $\$ 1$ are made at the end of the period for n periods.

- The present value (PV) of the annuity is denoted by $a_{\bar{n} \mid}$ or $a_{\overline{n \mid i}}$.

- The accumulated value (FV) of the annuity is denoted by $s_{\bar{n}}$ or $s_{\Pi i}$.

Relationship between $s_{\bar{n}}$ and $a_{\bar{n}}$

Geometric Progression/Geometric Series
$a+a r+a r^{2}+a r^{3}+\cdots+a r^{n-1}=\sum_{k=0}^{n-1} a r^{k}$

Example: David will receive payments of $\$ 50$ at the end of each month for the next 8 years. Assume $i^{(12)}=9 \%$
(a) Find the present value of this annuity.
(b) Find the accumulated value of this annuity.

Example: How much should be deposited at the end of each quarter so that at the end of 15 years the account balance is $\$ 75,000$? Assume an annual effective rate of interest of 6.14%.

Example: Bob invests a $\$ 15,000$ gift at nominal rate of 6% compounded quarterly. How much can be withdrawn at the end of every quarter to use up the fund exactly at the end of 6 years of college?

Section 3.3: Annuity-Due

An annuity-due is an annuity for which payments are made at the beginning of the period.

- The present value (PV) of the annuity-due is denoted by $\ddot{a}_{\vec{n}}$ or $\ddot{a}_{\vec{n} i}$.
- The accumulated value (FV) of the annuity-due is denoted by $\ddot{s}_{\bar{n} \mid}$ or $\ddot{s}_{\vec{n} i}$.

Relationship between $\ddot{s}_{\bar{n} \mid}, \ddot{a}_{\bar{n}}, s_{\bar{n},}$, and $a_{\bar{n}}$

	1	1	1	\cdots	1	1	
	1	1	1		1	1	1
0	1	2	3	\cdots	$n-1$	n	$n+1$

Example: Sam wishes to accumulate $\$ 30,000$ in an account in 7 years. He will make deposits semiannually with the first deposit at time 0 and the last deposit at time 6.5 . How large should the deposit be if the account earns a nominal rate of 8% compounded semianuualy.

Section 3.4: Annuity Values on any Date

Example: Suppose 7 payments of 1 are made at the end of the 4 th through 10 th periods, inclusive.

Find the value of the annuity
(a) at the end of the 1st period.

Note: This in an example of a deferred annuity, since payments only commence after a deferred period.
Notation: ${ }_{m} \mid a_{n}$ is n payments deffered after m periods.
(b) at the end of the 14th period.
(c) At the end of the 7th period.

