Chapter 4: More General Annuities

Section 4.5: Continuous Annuities

An annuity where the frequency of payment becomes infinite is called a continuous annuity.
$\bar{a}_{\bar{n} \mid}$ is the present value of an annuity payable continuously for n interest conversion periods, such that the total amount paid during each interest conversion period is 1 .
$\bar{a}_{\bar{n} \mid}=\int_{0}^{n} v^{t} d t=\left.\frac{v^{t}}{\ln (v)}\right|_{0} ^{n}=\frac{v^{n}-1}{\ln (v)}$

Alternate derivation: $\bar{a}_{\bar{n} \mid}=\lim _{m \rightarrow \infty} a_{\bar{n} \mid}^{(m)}=\lim _{m \rightarrow \infty} \frac{1-v^{n}}{i^{(m)}}=$

Notice: $\quad \bar{a}_{\bar{n} \mid}=\lim _{m \rightarrow \infty} \ddot{a}_{\bar{n} \mid}^{(m)}=\lim _{m \rightarrow \infty} \frac{1-v^{n}}{d^{(m)}}=$
$\bar{s}_{\bar{n} \mid}$ is the future value of an annuity payable continuously for n interest conversion periods, such that the total amount paid during each interest conversion period is 1 .
$\bar{s}_{\bar{n} \mid}=\int_{0}^{n}(1+i)^{t} d t=$

Example: Payments of $\$ 1000$ per year are made continuously over a 5 year period. Find the accumulated value of the fund three years after the payments end, assuming interest is 8% per annum compounded continuously.

Example: In 2004 and 2005 Susan deposits 12 every day into an account and in 2006 she deposits 15 every day in to the account. the account earns interest from the exact time of the deposit, with interest quoted as an effective rate of interest. The rates are 9% in 2004 and 2005 and 12% in 2006. Find the amount in the account, including interest, on December 31, 2006 using the approximation that deposits are made continuously.

Section 4.6: Payments Varying in Arithmetic Progression
Now consider annuities that have varying payments.
Any type of varying annuity can be evaluated by taking the present value or the accumulated value of each payment separately and summing the results.

Consider a general annuity-immediate with a term of n periods in which payments begin at P and increase by Q per period thereafter. The interest rate is i per period.

present value
accumulated value

Two Special Cases:

- Increasing Annuity in which $P=1$ and $Q=1$

Present Value: $(\mathrm{Ia})_{\bar{n}}$
(Ia) $)_{\bar{n}}=$

Accumulated value: $(\mathrm{Is})_{\bar{m}}=$

- Decreasing Annuity in which $P=n$ and $Q=-1$

Present Value: $(\mathrm{Da})_{\bar{n}}$
$(\mathrm{Da})_{\bar{n} \mid}=$

Accumulated value: $(\mathrm{Ds})_{\bar{n}}=$

Varying Perpetuities
If $P>0$ and $Q>0$ the the present value of of an arithmetic varying perpetuity-immediate is
$\mathrm{PV}=\lim _{n \rightarrow \infty} P a_{\bar{n} \mid}+Q \frac{a_{\bar{n} \mid}-n v^{n}}{i}=\frac{P}{i}+\frac{Q}{i^{2}}$
since $\lim _{n \rightarrow \infty} n v^{n}=0$ if $|v|<1$. can be shown by L'Hopitals.
Thus the notation/formula for an increasing perpetuity immediate is $(\mathrm{Ia})_{\infty}=\frac{1}{i}+\frac{1}{i^{2}}$

Now for Annuity-Due.

Note: For all the special case formulas of annuity-immediate. Changing the i in the denominator of the formulas to d will produce the special case values for annuity-due.

Example: George receives $\$ 400$ at time $1, \$ 600$ at time $2, \$ 800$ at time 3 and so on until the final payment of $\$ 2,200$. Using an annual effective interest rate of 6%, determine the present value of these payments at time 0 .

Example: An annuity-immediate has semiannual payments of $800,750,700, \ldots, 350$ at $i^{(2)}=0.16$. Find the present value of this annuity.

Example: Find the present value of a perpetuity-immediate whose first payment is 100 and each subsequent payment increases by 25 if the rate per period is 5%.

Example: A perpetuity due has annual payments that start today with a payment of $\$ 20$ and increase by annual amounts of $\$ 20$ for ever. Assume an annual effective rate of 5%. Find the present value of this annuity.

