Final Exam Information

You are encouraged to check this document to make sure that I did not accidentally have typos in any of the formulas.

Chapter 7

- Cash flows (in and out)
- net present value, $P(i)$, of a set of cash flows
- IRR, internal rate of return, also called the yield rate.
- computation
by formula
can be difficult depending on the number of cash flows.

BA calc
CF, NPV, and IRR buttons.
TI-84
npv(rate, initial, $\{$ cash flow\}, $\{$ cash flow freq. $\}$) $\operatorname{irr}($ initial, $\{$ cash flow $\},\{$ cash flow freq. $\})$

- Yield rate unique
calculator tend to give the one closest to zero if not unique.
- Reinvesting dividends/mortgage payments/bond payments at a different rate than the original account.
need to know formulas from the second exam material.
FV of a set of payments
FV of a set of increasing payments
Bond pricing and calculations
overall yield of the investment(adjusted yield rate).
- Interest measurement of a fund
$\mathrm{A}=$ amount at beginning of the period
$\mathrm{B}=$ amount at the end of the period
$\mathrm{I}=$ amount of interest earned during the period
$\mathrm{C}=$ total net amount of the principal contributed during the period.

Yield of the fund.
Actual yield, IRR
computed with formulas or cash flow worksheet

Simple interest approximation to IRR

$$
I R R \approx i^{D W}=\frac{I}{A+\sum C_{t}(1-t)}
$$

approximation to the dollar weighted approximation of the yield. can be used when there are lots of cash flows during the period or when just given overall totals.

$$
i^{D W} \approx \frac{I}{A+\frac{1}{2} C}=\frac{2 I}{A+B-I}
$$

Time-weighted rate of interest, $i^{T W}$

$$
1+i^{T W}=\left(\frac{B_{1}}{B_{0}}\right)\left(\frac{B_{2}}{B_{1}+C_{1}}\right) \cdots\left(\frac{B_{m}}{B_{m-1}+C_{m-1}}\right)
$$

- Portfolio Method for investment funds
- Investment Year method for investment funds

Chapter 10

- Yield Curve
- Spot Rates

Finding PV of a bond/investment
Computing from zero coupon bonds.
computing with bootstrap method using coupon bonds
at-par-yield rate

- Forward Rates
single year
multi-year
- relationship between spot rates and forward rates.
- computing forward rates from different investments.

Chapter 11

$$
\text { - } \begin{aligned}
N P V & =P(i)=\sum_{t=1}^{n} R_{t} v^{t}=\sum_{t=1}^{n} R_{t}(1+i)^{-t} \\
P^{\prime}(i) & =\sum_{t=1}^{n}-t R_{t} v^{t+1}=\sum_{t=1}^{n}-t R_{t}(1+i)^{-t-1} \\
P^{\prime \prime}(i) & =\sum_{t=1}^{n} t(t+1) R_{t} v^{t+2}=\sum_{t=1}^{n} t(t+1) R_{t}(1+i)^{-t-2}
\end{aligned}
$$

- Duration

Macaulay duration(Mac d)

$$
\bar{d}=\frac{\sum_{t=1}^{n} t * v^{t} R_{t}}{P V}
$$

for equal payments of R
$\bar{d}=\frac{R(I a)_{\bar{n}}}{R a_{\bar{\eta}}}$
$(I a)_{\bar{n} \mid}=\frac{\ddot{a}_{\bar{n} \mid}-n v^{n}}{i}=a_{\bar{n} \mid}+\frac{a_{\bar{\square}}-n v^{n}}{i}$
$(I a)_{\infty \mid}=\frac{1}{i}+\frac{1}{i^{2}}$
for a single payment
$\bar{d}=$ time of the payment
Modified duration(Mod d)

$$
\bar{v}=\frac{-P^{\prime}(i)}{P(i)}
$$

$\bar{d}=(1+i) \bar{v}$

- Using a first degree taylor polynomial to approximate the price when there is a small change in the interest rate.
$P(i+h) \approx P(i)+P^{\prime}(i) H=P(i)[1-\bar{v} h]$
- Convexity

$$
\bar{c}=\frac{P^{\prime \prime}(i)}{P(i)}
$$

- Using a second degree taylor polynomial to approximate the price when there is a small change in the interest rate.

$$
\begin{aligned}
& P(i+h) \approx P(i)+P^{\prime}(i) h+P^{\prime \prime}(i) \frac{h^{2}}{2} \\
& =P(i)\left[1-\bar{v} h+\bar{c} \frac{h^{2}}{2}\right]
\end{aligned}
$$

- $\frac{d}{d i} \bar{v}=\bar{v}^{2}-\bar{c}$
- multiple securities: P_{1}, \ldots, P_{m}

$$
\begin{aligned}
& \bar{d}=\frac{\bar{d}_{1} P_{1}+\bar{d}_{2} P_{2}+\cdots+\bar{d}_{m} P_{m}}{P} \\
& \bar{v}=\frac{\bar{v}_{1} P_{1}+\bar{v}_{2} P_{2}+\cdots+\bar{v}_{m} P_{m}}{P} \\
& \bar{c}=\frac{\bar{c}_{1} P_{1}+\bar{c}_{2} P_{2}+\cdots+\bar{c}_{m} P_{m}}{P}
\end{aligned}
$$

- Analyzing a portfolio with multiple interest rate.
- Absolute Matching/Dedication method to match cash outflows with cash inflows.
- Redding Immunization
- Full Immunization

Any additional topic/information covered in these chapters.

