1. (a) I) decay at 9%
II) decay at 9.43107%
(b) I) growth at 41.5%
II) growth at 34.71295%
(c) I) decay at 22.5858%
II) decay at 25.6%
2. (a) $y=70(.88)^{x}$ or $y=70 e^{-0.1278333 x}$
(b) solve $35=70(0.88)^{x}$ for x
exact answer: $x=\frac{\ln (0.5)}{\ln (0.88)}$ days
approximate answer: $x=5.42227$ days
(c) solve $24.67=70(0.88)^{x}$ for x
exact answer: $x=\frac{\ln \left(\frac{24.67}{70}\right)}{\ln (0.88)}$ days
approximate answer: $x=8.1583$ days
3. both of these can be done by hand or by calculator.
(a) $40 * 5^{x}=3 * 4^{2 x}$
$\ln (40)+x \ln (5)=\ln (3)+2 x \ln (4)$
$x(\ln (5)-2 \ln (4))=\ln (3)-\ln (40)$
$x=\frac{\ln (3)-\ln (40)}{\ln (5)-2 \ln (4)}$
or
$x=2.2269$
(b) $200=950 e^{-.0025 x}$
$x=\frac{\ln \left(\frac{20}{95}\right)}{-0.0025}$
or $x=623.2578$
4. (a) solve $7 P_{o}=P_{o}(1.35)^{x}$
$7=1.35^{x}$
Answer: $x=\frac{\ln (7)}{\ln (1.35)}=6.4841$
(b) $x=29.9737$ so
29.9737 years after 1990 .
5. use the points $(0,250)$ and $(5,2000)$
(a) $y=250(1.515716567)^{x}$
(b) 51.5717%
(c) $k=\ln (1.515716567)$

Answer: 41.5888\%
4. (a) $\log _{b} \frac{35}{b^{2}}=\log _{b} 35-\log _{b} b^{2}$
$=\log _{b} 5+\log _{b} 7-2$

Answer: 4.1293
(b) $\log _{b}\left(27 b^{5}\right)=\log _{b} 3^{3}+\log _{b} b^{5}$
$=3 \log _{b} 3+5$

Answer: 9.755

