1. (a) computing forward, backwards or the average all give the answer of
$f^{\prime}(2) \approx 2$
(b) The best estimate would be the backwards quotient since 5 is closer to 3 .
$f^{\prime}(5) \approx \frac{20-14}{5-3}=3$
2. draw tangent lines to get estimates
(a) $f^{\prime}(1) \approx \frac{1}{0.5}=2$
(b) $f^{\prime}(3) \approx \frac{0.6}{1}=0.6$
(c) $x=5$ and $x=9$
3. The derivative sketches are the thicker curves.

4. (a) graph of $f(x)$. The graph can be shifted up or down and still be correct.
\square
$\begin{array}{ll}1 & 1 \\ 2 & 4\end{array}$
(b) graph of $f(x)$. The graph can be shifted up or down and still be correct.

5. (a) $P(5)=6500$: After 5 hours there are 6500 critters. $P^{\prime}(5)=-840$: At the five hour mark, if we would go for one more hour, the number of critters would decrease by approximately 840 .
(b) $P(6) \approx 6500+(-840) * 1=5660$ critters
6. (a) $f(165)=153$: A person that weighs 165 pounds would take a dose of 153 milligrams.
$f^{\prime}(165)=5$: At the 165 pounds, if you go up by one pound, the dose will go up by approximately 5 milligrams
(b) $f(173) \approx 153+5 * 8=193$ milligrams
