Homework \#5

MATH 131

1. (a) concave up: $x<-2$ and also $x>2$
concave down: $-2<x<2$
(b) concave up: $x>0$
concave down: $x<0$
2. for $x<5$
$f^{\prime}(x)$ positive means $f(x)$ is increasing
$f^{\prime}(x)$ decreasing means $f(x)$ is concave down.
for $x>5$
$f^{\prime}(x)$ negative means $f(x)$ is decreasing
$f^{\prime}(x)$ increasing means $f(x)$ is concave up.

3. (a) $y^{\prime}=30 x^{4}-7$
(b) $y^{\prime}=3 * 5^{3 x} \ln (5)-21 x^{-4}$
(c) $y^{\prime}=35 x^{4}+8 x^{3}+6 e^{6 x}$

$$
\begin{aligned}
& y^{\prime \prime}=140 x^{3}+24 x^{2}+6 * 6 e^{6 x}=140 x^{3}+24 x^{2}+ \\
& 36 e^{6 x}
\end{aligned}
$$

4. (a) $y^{\prime}=8\left(x^{5}+3 x-5\right)^{7} *\left(5 x^{4}+3\right)$
(b) $y^{\prime}=\frac{4 x^{3}-35 e^{5 x}}{x^{4}-7 e^{5 x}-9}$
(c) $y^{\prime}=\frac{1}{3}\left(x^{9}+23 x\right)^{-2 / 3} *\left(9 x^{8}+23\right)$
5. (a) plug in 2 into the function to get the y-value.
point (2, -49)
plug in 2 into the derivative to get the slope of the tangent line.
$y^{\prime}=4 x^{3}-21 x^{2}-5$
$m_{\text {tan }}=-57$
Answer: $y+49=-57(x-2)$
(b) point is $(2,4)$
$y^{\prime}=\frac{3 x^{2}-4}{x^{3}-4 x+1}+2$
$m_{t a n}=\frac{8}{1}+2=10$
Answer: $y-4=10(x-2)$
6. (a) $H(x)=f(g(x))$ so
$H^{\prime}(x)=f^{\prime}(g(x)) * g^{\prime}(x)$
$H^{\prime}(70)=f^{\prime}(g(70)) * g^{\prime}(70)$
$H^{\prime}(70)=f^{\prime}(60) * g^{\prime}(70)$
$H^{\prime}(70)=1 * 0$
Answer: $H^{\prime}(70)=0$
(b) $H(x)=g(f(x))$ so
$H^{\prime}(x)=g^{\prime}(f(x)) * f^{\prime}(x)$
$H^{\prime}(70)=g^{\prime}(f(70)) * f^{\prime}(70)$
$H^{\prime}(70)=g^{\prime}(30) * f^{\prime}(70)$
$H^{\prime}(70)=\frac{1}{2} * 1$
Answer: $H^{\prime}(70)=\frac{1}{2}$
