1. A plant can manufacture 60 golf clubs per day for a daily cost of $\$ 6,857$. For a daily cost of $\$ 8236$ the plant can manufacture 85 golf clubs per day. Assuming that daily cost and production are linearly related, find the function that will give the daily cost as a function of the nubmer of clubs produced.
points: $(60,6857)$ and $(85,8236)$ and $m=\frac{8236-6857}{85-60}=55.16$
$y-8236=55.16(x-85)$
can also use linear regression: cost $y=55.16 x+3547.4$
2. The price-demand function for a product is given by $p=-0.24 x+275.9$, where p is in dollars and x is the number of items demanded. If the number of items demanded increased by 180 , how will this affect the price of the items?

Note: $-0.24 * 180=-43.2$

The price will decrease by $\$ 43.20$
3. Find the domain of the function $f(x)=\frac{x+5}{4 x^{3}+7 x^{2}}$
$f(x)=\frac{x+5}{x^{2}(4 x+7)}$
domain is all real numbers except $x=0$ and $x=\frac{-7}{4}$

