1. A plant can manufacture 55 golf clubs per day for a daily cost of $\$ 7,450$. For a daily cost of $\$ 9,840$ the plant can manufacture 75 golf clubs per day. Assuming that daily cost and production are linearly related, find the function that will give the daily cost as a function of the number of clubs produced.
points: $(55,7450)$ and $(75,9840)$ and $m=\frac{9840-7450}{75-55}=119.5$
$y-7450=119.5(x-55)$
can also use linear regression: cost $y=119.5 x+877.5$
2. The price-demand function for a product is given by $p=-0.115 x+435.78$, where p is in dollars and x is the number of items demanded. If the number of items demanded increased by 240 , how will this affect the price of the items?

Note: $-0.115 * 240=-27.6$

The price will decrease by $\$ 27.60$
3. Find the domain of the $f(x)=\frac{x-4}{3 x^{3}-10 x^{2}}$
$f(x)=\frac{x-4}{x^{2}(3 x-10)}$
domain is all real numbers except $x=0$ and $x=\frac{10}{3}$

